Skip to main content
Log in

Mitochondrial abnormalities in the putamen in Parkinson’s disease dyskinesia

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Prolonged treatment of Parkinson’s disease (PD) with levodopa leads to disabling side effects collectively referred to as ‘dyskinesias’. We hypothesized that bioenergetic function in the putamen might play a crucial role in the development of dyskinesias. To test this hypothesis, we used post mortem samples of the human putamen and applied real time–PCR approaches and gene expression microarrays. We found that mitochondrial DNA (mtDNA) levels are decreased in patients who have developed dyskinesias, and mtDNA damage is concomitantly increased. These pathologies were not observed in PD subjects without signs of dyskinesias. The group of nuclear mRNA transcripts coding for the proteins of the mitochondrial electron transfer chain was decreased in patients with dyskinesias to a larger extent than in patients who had not developed dyskinesias. To examine whether dopamine fluctuations affect mtDNA levels in dopaminoceptive neurons, rat striatal neurons in culture were repeatedly exposed to levodopa, dopamine or their metabolites. MtDNA levels were reduced after treatment with dopamine, but not after treatment with dopamine metabolites. Levodopa led to an increase in mtDNA levels. We conclude that mitochondrial susceptibility in the putamen plays a role in the development of dyskinesias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  CAS  PubMed  Google Scholar 

  2. Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  CAS  PubMed  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  4. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  5. Birkmayer W, Hornykiewicz O (1961) Der Dioxyphenylalanin (=DOPA)-Effekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73:787–788

    CAS  PubMed  Google Scholar 

  6. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  7. Budd SL, Nicholls DG (1996) Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67:2282–2291

    Article  CAS  PubMed  Google Scholar 

  8. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  9. Cenci MA, Lindgren HS (2007) Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665–671

    Article  CAS  PubMed  Google Scholar 

  10. Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36:125–131

    Article  PubMed  Google Scholar 

  11. Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823

    Article  CAS  PubMed  Google Scholar 

  12. Cookson MR DJ-1, PINK1, and their effects on mitochondrial pathways. Mov Disord 25(Suppl 1):S44–S48

  13. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  CAS  PubMed  Google Scholar 

  14. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  15. Dudman JT, Eaton ME, Rajadhyaksha A et al (2003) Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem 87:922–934

    Article  CAS  PubMed  Google Scholar 

  16. Fahn S, Oakes D, Shoulson I et al (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508

    Article  CAS  PubMed  Google Scholar 

  17. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093

    CAS  PubMed  Google Scholar 

  18. Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23:S64–S70

    Article  CAS  PubMed  Google Scholar 

  19. Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587

    Article  CAS  PubMed  Google Scholar 

  20. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    CAS  PubMed  Google Scholar 

  21. Hattoria N, Wanga M, Taka H et al (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S35–S38

    Article  PubMed  Google Scholar 

  22. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  23. Jankovic J (2002) Levodopa strengths and weaknesses. Neurology 58:S19–S32

    CAS  PubMed  Google Scholar 

  24. Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13

    CAS  PubMed  Google Scholar 

  25. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 (discussion S36–S28)

    Article  CAS  PubMed  Google Scholar 

  26. Kastner A, Anglade P, Bounaix C et al (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience 62:449–457

    Article  CAS  PubMed  Google Scholar 

  27. Konradi C (1998) The molecular basis of dopamine and glutamate interactions in the striatum. Adv Pharmacol 42:729–733

    Article  CAS  PubMed  Google Scholar 

  28. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  CAS  PubMed  Google Scholar 

  29. Laderman KA, Penny JR, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1996) Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem 271:15891–15897

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  CAS  PubMed  Google Scholar 

  31. Maguire-Zeiss KA, Short DW, Federoff HJ (2005) Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res Mol Brain Res 134:18–23

    Article  CAS  PubMed  Google Scholar 

  32. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  CAS  PubMed  Google Scholar 

  33. Nicklas WJ, Saporito M, Basma A, Geller HM, Heikkila RE (1992) Mitochondrial mechanisms of neurotoxicity. Ann N Y Acad Sci 648:28–36

    Article  CAS  PubMed  Google Scholar 

  34. Pankratz N, Foroud T (2007) Genetics of Parkinson disease. Genet Med 9:801–811

    Article  PubMed  Google Scholar 

  35. Prithivirajsingh S, Story MD, Bergh SA et al (2004) Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett 571:227–232

    Article  CAS  PubMed  Google Scholar 

  36. Rajadhyaksha A, Barczak A, Macias W, Leveque JC, Lewis SE, Konradi C (1999) l-Type Ca(2+) channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci 19:6348–6359

    CAS  PubMed  Google Scholar 

  37. Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:303–313

    Article  CAS  PubMed  Google Scholar 

  38. Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777

    Article  CAS  PubMed  Google Scholar 

  39. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  40. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  41. Schapira AH, Hartley A, Cleeter MW, Cooper JM (1993) Free radicals and mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Trans 21:367–370

    CAS  PubMed  Google Scholar 

  42. Schapira AH, Olanow CW (2008) Drug selection and timing of initiation of treatment in early Parkinson’s disease. Ann Neurol 64(Suppl 2):S47–S55

    CAS  PubMed  Google Scholar 

  43. Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7:1110–1120

    Article  CAS  Google Scholar 

  44. Zeevalk GD, Bernard LP, Song C, Gluck M, Ehrhart J (2005) Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal 7:1117–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the staff of the Harvard Brain Tissue Resource Center at McLean Hospital, who provided all tissues and to the study subjects. Angela Cenci, MD, provided helpful discussions. Melissa Hodges provided technical support in the laboratory. This work was supported by the National Institutes of Health [NS48235 to C.K.; MH068855 to HBTRC]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutes or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Konradi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2010_740_MOESM1_ESM.doc

Demographic data of all samples. Not all samples were available for each experiment. Duration of disease and L-dopa levels were significantly different in the entire group. Thus, subgroups of samples were used which were controlled for these parameters. (DOC 121 kb)

Sequences of primer pairs for PCR reactions (DOC 79 kb)

401_2010_740_MOESM3_ESM.doc

Detailed gene expression data of electron transport proteins. ‘Mean’ data are natural values; p-values were obtained from log2 –transformed data to ensure normal distribution. (DOC 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naydenov, A.V., Vassoler, F., Luksik, A.S. et al. Mitochondrial abnormalities in the putamen in Parkinson’s disease dyskinesia. Acta Neuropathol 120, 623–631 (2010). https://doi.org/10.1007/s00401-010-0740-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0740-8

Keywords

Navigation