Skip to main content

Advertisement

Log in

Oxidative stress induced by loss of Cu,Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Axonal degeneration is a common pathologic feature in peripheral neuropathy, neurodegenerative disease, and normal aging. Oxidative stress may be an important mechanism of axonal degeneration, but is underrepresented among current experimental models. To test the effects of loss of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) on axon survival, we cultured dorsal root ganglion (DRG) neurons from SOD1 knockout mice. Beginning as early as 48–72 h, we observed striking degeneration of Sod1−/− axons that was prevented by introduction of human SOD1 and was attenuated by antioxidant treatment. To test susceptibility to increased superoxide production, we exposed wild-type DRGs to the redox-cycling herbicides paraquat and diquat (DQ). Dose-dependent axon degeneration was observed, and toxicity of DQ was exacerbated by SOD1 deficiency. MTT staining suggested that DRG axons are more susceptible to injury than their parent cell bodies in both paradigms. Taken together, these data demonstrate susceptibility of DRG axons to oxidative stress-mediated injury due to loss of SOD1 or excess superoxide production. These in vitro models provide a novel means of investigating oxidative stress-mediated injury to axons, to improve our understanding of axonal redox control and dysfunction in peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akude E, Zherebitskaya E, Roy Chowdhury SK, Girling K, Fernyhough P (2009) 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy. Neurotox Res. doi:10.1007/s12640-009-9074-5

  2. Al-Kateb H, Boright AP, Mirea L et al (2008) Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics study. Diabetes 57:218–228

    Article  PubMed  CAS  Google Scholar 

  3. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71:2041–2048

    PubMed  CAS  Google Scholar 

  4. Baldereschi M, Inzitari M, Di Carlo A et al (2007) Epidemiology of distal symmetrical neuropathies in the Italian elderly. Neurology 68:1460–1467

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  PubMed  CAS  Google Scholar 

  6. Bogdanov M, Brown RH, Matson W et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658

    Article  PubMed  CAS  Google Scholar 

  7. Bonneh-Barkay D, Langston WJ, Di Monte D (2005) Toxicity of redox cycling pesticides in primary mesencephalic cultures. Antioxid Redox Signal 7:649–653

    Article  PubMed  CAS  Google Scholar 

  8. Bus JS, Aust SD, Gibson JE (1974) Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun 58:749–755

    Article  PubMed  CAS  Google Scholar 

  9. Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 92:6264–6268

    Article  PubMed  CAS  Google Scholar 

  10. Ceballos D, Cuadras J, Verdú E, Navarro X (1999) Morphometric and ultrastructural changes with ageing in mouse peripheral nerve. J Anat 195(Pt 4):563–576

    Article  PubMed  Google Scholar 

  11. Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. J Neurosci 29:3365–3373

    Article  PubMed  CAS  Google Scholar 

  12. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  13. Coleman M, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25:532–537

    Article  PubMed  CAS  Google Scholar 

  14. Crow J, Calingasan N, Chen J, Hill J, Beal M (2005) Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol 58:258–265

    Article  PubMed  CAS  Google Scholar 

  15. Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW (2000) Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279:324–329

    Article  PubMed  CAS  Google Scholar 

  16. DeRubertis FR, Craven PA, Melhem MF (2007) Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol. Metab Clin Exp 56:1256–1264

    PubMed  CAS  Google Scholar 

  17. Elchuri S, Oberley TD, Qi W et al (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    Article  PubMed  CAS  Google Scholar 

  18. Estévez AG, Crow JP, Sampson JB et al (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    Article  PubMed  Google Scholar 

  19. Ferrante RJ, Browne SE, Shinobu LA et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    PubMed  CAS  Google Scholar 

  20. Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314

    Article  PubMed  CAS  Google Scholar 

  21. Fischer LR, Culver D, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240

    Article  PubMed  Google Scholar 

  22. Fischer LR, Glass J (2007) Axonal degeneration in motor neuron disease. Neurodegener Dis 4:431–442

    Article  PubMed  Google Scholar 

  23. Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M (2008) Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet 9:30

    Article  PubMed  CAS  Google Scholar 

  24. Flood DG, Reaume AG, Gruner JA et al (1999) Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am J Pathol 155:663–672

    PubMed  CAS  Google Scholar 

  25. Fordel E, Thijs L, Martinet W et al (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410:146–151

    Article  PubMed  CAS  Google Scholar 

  26. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20:2534–2542

    PubMed  CAS  Google Scholar 

  27. Hall ED, Andrus PK, Oostveen JA, Fleck TJ, Gurney ME (1998) Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J Neurosci Res 53:66–77

    Article  PubMed  CAS  Google Scholar 

  28. Hansen J, Klass M, Harris C, Csete M (2007) A reducing redox environment promotes C2C12 myogenesis: implications for regeneration in aged muscle. Cell Biol Int 31:546–553

    Article  PubMed  CAS  Google Scholar 

  29. Harraz MM, Marden JJ, Zhou W et al (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118:659–670

    PubMed  CAS  Google Scholar 

  30. Hashizume K, Hirasawa M, Imamura Y et al (2008) Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am J Pathol 172:1325–1331

    Article  PubMed  Google Scholar 

  31. Ho YS, Magnenat JL, Bronson RT et al (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651

    Article  PubMed  CAS  Google Scholar 

  32. Huang TT, Yasunami M, Carlson EJ et al (1997) Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch Biochem Biophys 344:424–432

    Article  PubMed  CAS  Google Scholar 

  33. Ishii T, Bannai S, Sugita Y (1981) Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem 256:12387–12392

    PubMed  CAS  Google Scholar 

  34. Jones DP, Maellaro E, Jiang S, Slater AF, Orrenius S (1995) Effects of N-acetyl-l-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. Immunol Lett 45:205–209

    Article  PubMed  CAS  Google Scholar 

  35. Jones GM, Vale JA (2000) Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J Toxicol Clin Toxicol 38:123–128

    Article  PubMed  CAS  Google Scholar 

  36. Kim N, Jeong M, Choi S, Hoonkang J (2004) Oxidative modification of neurofilament-L by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Biochimie 86:553–559

    Article  PubMed  CAS  Google Scholar 

  37. Kondo T, Reaume AG, Huang TT et al (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189

    PubMed  CAS  Google Scholar 

  38. Kriscenski-Perry E, Durham HD, Sheu SS, Figlewicz DA (2002) Synergistic effects of low level stressors in an oxidative damage model of spinal motor neuron degeneration. Amyotroph Lateral Scler Other Motor Neuron Disord 3:151–157

    Article  PubMed  CAS  Google Scholar 

  39. Lebovitz R (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787

    Article  PubMed  CAS  Google Scholar 

  40. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21:8473–8481

    PubMed  CAS  Google Scholar 

  41. Lourenssen S, Miller KG, Blennerhassett MG (2009) Discrete responses of myenteric neurons to structural and functional damage by neurotoxins in vitro. Am J Physiol Gastrointest Liver Physiol 297:G228–G239

    Article  PubMed  CAS  Google Scholar 

  42. MacInnis BL, Campenot RB (2005) Regulation of Wallerian degeneration and nerve growth factor withdrawal-induced pruning of axons of sympathetic neurons by the proteasome and the MEK/Erk pathway. Mol Cell Neurosci 28:430–439

    Article  PubMed  CAS  Google Scholar 

  43. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  44. McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8

    Article  PubMed  CAS  Google Scholar 

  45. Muller F, Song W, Liu Y et al (2006) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 40:1993–2004

    Article  PubMed  CAS  Google Scholar 

  46. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  PubMed  CAS  Google Scholar 

  47. Olofsson EM, Marklund SL, Behndig A (2009) Enhanced diabetes-induced cataract in copper-zinc superoxide dismutase-null mice. Invest Ophthalmol Vis Sci 50:2913–2918

    Article  PubMed  Google Scholar 

  48. Pedersen WA, Fu W, Keller JN et al (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819–824

    Article  PubMed  CAS  Google Scholar 

  49. Press C, Milbrandt J (2008) Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J Neurosci 28:4861–4871

    Article  PubMed  CAS  Google Scholar 

  50. Pun S, Santos A, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  PubMed  CAS  Google Scholar 

  51. Qi X, Lewin AS, Hauswirth WW, Guy J (2003) Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci 44:1088–1096

    Article  PubMed  Google Scholar 

  52. Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871

    Article  PubMed  CAS  Google Scholar 

  53. Reaume AG, Elliott JL, Hoffman EK et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  PubMed  CAS  Google Scholar 

  54. Reddy VN, Kasahara E, Hiraoka M, Lin LR, Ho YS (2004) Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium. Exp Eye Res 79:859–868

    Article  PubMed  CAS  Google Scholar 

  55. Romero FJ, Monsalve E, Hermenegildo C et al (1991) Oxygen toxicity in the nervous tissue: comparison of the antioxidant defense of rat brain and sciatic nerve. Neurochem Res 16:157–161

    Article  PubMed  CAS  Google Scholar 

  56. Rothstein J (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    Article  PubMed  CAS  Google Scholar 

  57. Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA 91:4155–4159

    Article  PubMed  CAS  Google Scholar 

  58. Said G, Goulon-Goeau C, Slama G, Tchobroutsky G (1992) Severe early-onset polyneuropathy in insulin-dependent diabetes mellitus. A clinical and pathological study. N Engl J Med 326:1257–1263

    Article  PubMed  CAS  Google Scholar 

  59. Sandy MS, Moldeus P, Ross D, Smith MT (1986) Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Studies with a compromised isolated hepatocyte model system. Biochem Pharmacol 35:3095–3101

    Article  PubMed  CAS  Google Scholar 

  60. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz PJ, Reaume A, Scott R, Coyle JT (1998) Effects of over- and under-expression of Cu, Zn-superoxide dismutase on the toxicity of glutamate analogs in transgenic mouse striatum. Brain Res 789:32–39

    Article  PubMed  CAS  Google Scholar 

  62. Sharma AK, Bajada S, Thomas PK (1980) Age changes in the tibial and plantar nerves of the rat. J Anat 130:417–428

    PubMed  CAS  Google Scholar 

  63. Shefner JM, Reaume AG, Flood DG et al (1999) Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 53:1239–1246

    PubMed  CAS  Google Scholar 

  64. Song MS, Saavedra L, de Chaves EI (2006) Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Abeta in distal axons. Neurobiol Aging 27:1224–1238

    Article  PubMed  CAS  Google Scholar 

  65. Stokin GB, Lillo C, Falzone TL et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  PubMed  CAS  Google Scholar 

  66. Studer L, Csete M, Lee SH et al (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383

    PubMed  CAS  Google Scholar 

  67. Tabata H, Ikegami H, Kariya K (2000) A parallel comparison of age-related peripheral nerve changes in three different strains of mice. Exp Anim 49:295–299

    Article  PubMed  CAS  Google Scholar 

  68. Thomas PK, Tomlinson DR (1993) Diabetic and hypoglycemic neuropathy. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, vol 2. WB Saunders & Co, Philadelphia, pp 1219–1250

    Google Scholar 

  69. Troy CM, Shelanski ML (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci USA 91:6384–6387

    Article  PubMed  CAS  Google Scholar 

  70. Vijayvergiya C, Beal MF, Buck J, Manfredi G (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25:2463–2470

    Article  PubMed  CAS  Google Scholar 

  71. Vincent AM, Russell JW, Sullivan KA et al (2007) SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp Neurol 208:216–227

    PubMed  CAS  Google Scholar 

  72. Wang M, Davis A, Culver D, Glass J (2002) WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann Neurol 52:442–447

    Article  PubMed  Google Scholar 

  73. Wang M, Wu Y, Culver DG, Glass J (2000) Pathogenesis of axonal degeneration: parallels between Wallerian degeneration and vincristine neuropathy. J Neuropathol Exp Neurol 59:599–606

    PubMed  CAS  Google Scholar 

  74. Watkins PJ, Gayle C, Alsanjari N, Scaravilli F, Zanone M, Thomas PK (1995) Severe sensory-autonomic neuropathy and endocrinopathy in insulin-dependent diabetes. QJM 88:795–804

    PubMed  CAS  Google Scholar 

  75. Wiedau-Pazos M, Goto JJ, Rabizadeh S et al (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515–518

    Article  PubMed  CAS  Google Scholar 

  76. Wroe R, Wai-Ling Butler A, Andersen PM, Powell JF, Al-Chalabi A (2008) ALSOD: the amyotrophic lateral sclerosis online database. Amyotroph Lateral Scler 9:249–250

    Article  PubMed  CAS  Google Scholar 

  77. Zherebitskaya E, Akude E, Smith DR, Fernyhough P (2009) Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes 58:1356–1364

    Article  PubMed  CAS  Google Scholar 

  78. Zochodne DW, Verge VM, Cheng C, Sun H, Johnston J (2001) Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 124:2319–2334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Marie Csete for providing Sod1−/− breeders and low oxygen culture equipment, to Minsheng Wang for instruction on DRG cultures, and to Seneshaw Asress for technical assistance. This work was supported by a grant from the Packard Center for ALS Research and by NIH T32 training grant ES12870 (LF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, L.R., Glass, J.D. Oxidative stress induced by loss of Cu,Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures. Acta Neuropathol 119, 249–259 (2010). https://doi.org/10.1007/s00401-009-0631-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0631-z

Keywords

Navigation