Skip to main content

Advertisement

Log in

p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

p62, also known as sequestosome1, is a shuttle protein transporting polyubiquitinated proteins for both the proteasomal and lysosomal degradation. p62 is an integral component of inclusions in brains of various neurodegenerative disorders, including Alzheimer disease (AD) neurofibrillary tangles (NFTs) and Lewy bodies in Parkinson disease. In AD brain, the p62 localized in NFTs is associated with phosphorylated tau (p-tau). Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease associated with aging, and its muscle tissue has several phenotypic similarities to AD brain. Abnormal accumulation of intracellular multiprotein inclusions, containing p-tau in the form of paired helical filaments, amyloid-β, and several other “Alzheimer-characteristic proteins”, is a characteristic feature of the s-IBM muscle fiber phenotype. Diminished proteasomal and lysosomal protein degradation appear to play an important role in the formation of intra-muscle-fiber inclusions. We now report that: (1) in s-IBM muscle fibers, p62 protein is increased on both the protein and the mRNA levels, and it is strongly accumulated within, and as a dense peripheral shell surrounding, p-tau containing inclusions, by both the light- and electron-microscopy. Accordingly, our studies provide a new, reliable, and simple molecular marker of p-tau inclusions in s-IBM muscle fibers. The prominent p62 immunohistochemical positivity and pattern diagnostically distinguish s-IBM from polymyositis and dermatomyositis. (2) In normal cultured human muscle fibers, experimental inhibition of either proteasomal or lysosomal protein degradation caused substantial increase of p62, suggesting that similar in vivo mechanisms might contribute to the p62 increase in s-IBM muscle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Askanas V, Engel WK (1992) Cultured normal and genetically abnormal human muscle. In: Rowland LP, Di Mauro S (eds) The handbook of clinical neurology, myopathies, vol 18. North Holland, Amsterdam, pp 85–116

    Google Scholar 

  2. Askanas V, Engel WK (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 19:550–559

    Article  PubMed  Google Scholar 

  3. Askanas V, Engel WK (2008) Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains. Acta Neuropathol 116:583–595

    Article  PubMed  Google Scholar 

  4. Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14

    PubMed  CAS  Google Scholar 

  5. Askanas V, Engel WK, Alvarez RB (1993) Enhanced detection of congo-red-positive amyloid deposits in muscle fibers of inclusion body myositis and brain of Alzheimer’s disease using fluorescence technique. Neurology 43:1265–1267

    PubMed  CAS  Google Scholar 

  6. Askanas V, Engel WK, Alvarez RB, McFerrin J, Broccolini A (2000) Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J Neuropathol Exp Neurol 59:592–598

    PubMed  CAS  Google Scholar 

  7. Askanas V, Engel WK, Nogalska A (2009) Inclusion-body myositis: a degenerative muscle disease associated with intra-muscle-fiber multiprotein aggregates, proteasome inhibition, endoplasmic reticulum stress, and decreased lysosomal degradation. Brain Pathol 19:493–506. doi:10.1111/j.1750-3639.2009.00290.x

  8. Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203

    Article  PubMed  CAS  Google Scholar 

  9. Babu R, Seibenhener LM, Peng J, Strom AL, Kemppainen R, Cox N, Zhu H, Wooten MC, Diaz-Meco MT, Moscat J, Wooten MW (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106:107–120

    Article  CAS  Google Scholar 

  10. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  Google Scholar 

  11. Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2:138–139

    PubMed  Google Scholar 

  12. Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, Joazeiro CAP (2003) Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci USA 100:8892–8897

    Article  PubMed  CAS  Google Scholar 

  13. Fratta P, Engel WK, McFerrin J, Davies KJ, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-β precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526

    PubMed  CAS  Google Scholar 

  14. Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 189:167–170

    Article  PubMed  CAS  Google Scholar 

  15. Ishii T, Yanagawa T, Yuki K, Kawane T, Yoshida H, Bannai S (1997) Low micromolar levels of hydrogen peroxide and proteasome inhibitors induce the 60-kDa A170 stress protein in murine peritoneal macrophages. Biochem Biophys Res Comm 232:33–37

    Article  PubMed  CAS  Google Scholar 

  16. Josephs KA, Lin WL, Ahmed Z, Stroh DA, Graff-Radford NR, Dickson DW (2008) Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathol 116:159–167

    Article  PubMed  CAS  Google Scholar 

  17. Ksiezak-Reding H, Dickson DW, Davies P, Yen SH (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 84:3410–3414

    Article  PubMed  CAS  Google Scholar 

  18. Kuusisto E, Kauppinen T, Alafuzoff I (2008) Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol 34:69–80

    Article  Google Scholar 

  19. Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237

    Article  PubMed  CAS  Google Scholar 

  20. Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. NeuroReport 12:2085–2090

    Article  PubMed  CAS  Google Scholar 

  21. Kuusisto E, Suuronen T, Salminen A (2001) Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Comm 280:223–228

    Article  PubMed  CAS  Google Scholar 

  22. Mendell JR, Sahenk Z, Gales T, Paul L (1991) Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch Neurol 48:1229–1234

    PubMed  CAS  Google Scholar 

  23. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408

    Article  PubMed  CAS  Google Scholar 

  24. Mirabella M, Alvarez RB, Bilak M, Engel WK, Askanas V (1996) Difference in expression of phosphorylated tau epitopes between sporadic inclusion-body myositis and hereditary inclusion-body myopathies. J Neuropathol Exp Neurol 55:774–786

    Article  PubMed  CAS  Google Scholar 

  25. Moscat J, Diaz-Meco MT, Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32:95–100

    Article  PubMed  CAS  Google Scholar 

  26. Needham M, Mastaglia FL (2007) Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 6:620–631

    Article  PubMed  Google Scholar 

  27. Nogalska A, Engel WK, McFerrin J, Kokame K, Komano H, Askanas V (2006) Homocysteine-induced endoplasmic reticulum protein (Herp) is up-regulated in sporadic inclusion-body myositis and in endoplasmic reticulum stress-induced cultured human muscle fibers. J Neurochem 96:1491–1499

    Article  PubMed  CAS  Google Scholar 

  28. Nogalska A, Wojcik S, Engel WK, McFerrin J, Askanas V (2007) Endoplasmic reticulum stress induces myostatin precursor protein and NF-κB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol 204:610–618

    Article  PubMed  CAS  Google Scholar 

  29. Nukina N, Kosik KS, Selkoe DJ (1987) Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci USA 84:3415–3419

    Article  PubMed  CAS  Google Scholar 

  30. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    Article  PubMed  CAS  Google Scholar 

  31. Olivé M, van Leeuwen FW, Janué A, Moreno D, Torrejón-Escribano B, Ferrer I (2008) Expression of mutant ubiquitin (UBB + 1) and p62 in myotilinopathies and desminopathies. Neuropathol Appl Neurobiol 34:76–87

    PubMed  Google Scholar 

  32. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  33. Scott IS, Lowe JS (2007) The ubiquitin-binding protein p62 identifies argyrophilic grain pathology with greater sensitivity than conventional silver stains. Acta Neuropathol 113:417–420

    Article  PubMed  CAS  Google Scholar 

  34. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    Article  PubMed  CAS  Google Scholar 

  35. Terracciano C, Nogalska A, Engel WK, Wojcik S, Askanas V (2008) In inclusion-body myositis muscle fibers Parkinson-associated DJ-1 is increased and oxidized. Free Radic Biol Med 45:773–779

    Article  PubMed  CAS  Google Scholar 

  36. Yang CC, Alvarez RB, Engel WK, Askanas V (1996) Increase of nitric oxide synthases and nitrotyrosine in inclusion-body myositis. NeuroReport 8:153–158

    Article  PubMed  CAS  Google Scholar 

  37. Yang CC, Askanas V, Engel WK, Alvarez RB (1998) Immunolocalization of transcription factor NF-kappaB in inclusion-body myositis muscle and at normal human neuromuscular junctions. Neurosci Lett 254:77–80

    Article  PubMed  CAS  Google Scholar 

  38. Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263

    PubMed  CAS  Google Scholar 

  39. Zheng-Fischhèofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 252:542–552

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Nogalska is on leave from the Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland. Dr. Terracciano was on leave from the Department of Neuroscience, University of Tor Vergata and Fondazione S. Lucia, Rome, Italy. Maggie Baburyan provided excellent technical assistance in electronmicroscopy. Margherita Simonetti participated in tissue culture experiments. We are grateful to Dr. Michael Jakowec of the USC Department of Neurology for allowing us to use his real-time PCR equipment. Supported by grants (to VA) from the National Institutes of Health (AG 16768 Merit Award), the Muscular Dystrophy Association, and The Myositis Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Askanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogalska, A., Terracciano, C., D’Agostino, C. et al. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 118, 407–413 (2009). https://doi.org/10.1007/s00401-009-0564-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0564-6

Keywords

Navigation