Skip to main content

Advertisement

Log in

Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The involvement of dorsal root ganglia was studied in an in vivo model of experimental rabies virus infection using the challenge virus standard (CVS-11) strain. Dorsal root ganglia neurons infected with CVS in vitro show prolonged survival and few morphological changes, and are commonly used to study the infection. It has been established that after peripheral inoculation of mice with CVS the brain and spinal cord show relatively few neurodegenerative changes, but detailed studies of pathological changes in dorsal root ganglia have not previously been performed in this in vivo experimental model. In this study, adult ICR mice were inoculated in the right hindlimb footpad with CVS. Spinal cords and dorsal root ganglia were evaluated at serial time points for histopathological and ultrastructural changes and for biochemical markers of cell death. Light microscopy showed multifocal mononuclear inflammatory cell infiltrates in the sensory ganglia and a spectrum of degenerative neuronal changes. Ultrastructural changes in gangliocytes included features characteristic of the axotomy response, the appearance of numerous autophagic compartments, and aggregation of intermediate filaments, while the neurons retained relatively intact mitochondria and plasma membranes. Later in the process, there were more extensive degenerative neuronal changes without typical features of either apoptosis or necrosis. The degree of degenerative neuronal changes in gangliocytes contrasts with observations in CNS neurons in experimental rabies. Hence, gangliocytes exhibit selective vulnerability in this animal model. This contrasts markedly with the fact that they are, unlike CNS neurons, highly permissive to CVS infection in vitro. Further study is needed to determine mechanisms for this selective vulnerability, which will give us a better understanding of the pathogenesis of rabies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis: basic types and mechanisms of cell death. Arch Pathol Lab Med 117:1208–1214

    PubMed  CAS  Google Scholar 

  2. Castellanos J, Hurtado H, Arias J, Velandia A (1996) Rabies virus infection of cultured adult mouse dorsal root ganglion neurons. Mem Inst Oswaldo Cruz 91:621–625. doi:10.1590/S0074-02761996000500014

    Article  PubMed  CAS  Google Scholar 

  3. Castellanos JE, Martinez M, Acosta O, Hurtado H (2000) Nerve growth factor and neurotrophin-3 modulate the rabies infection of adult sensory neurons in primary cultures. Brain Res 871:120–126. doi:10.1016/S0006-8993(00)02408-2

    Article  PubMed  CAS  Google Scholar 

  4. Charlton KM, Casey GA (1979) Experimental rabies in skunks: immunofluorescence light and electron microscopic studies. Lab Invest 41:36–44

    PubMed  CAS  Google Scholar 

  5. Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1:66–74

    PubMed  CAS  Google Scholar 

  6. Egan DA, Flumerfelt BA, Gwyn DG (1977) A light and electron microscopic study of axon reaction in the red nucleus of the rat following cervical and thoracic lesions. Neuropathol Appl Neurobiol 3:423–439. doi:10.1111/j.1365-2990.1977.tb00602.x

    Article  Google Scholar 

  7. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1–10

    PubMed  CAS  Google Scholar 

  8. Eskelinen EL (2008) To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4:257–260

    PubMed  Google Scholar 

  9. Fernyhough P, Smith DR, Schapansky J et al (2005) Activation of nuclear factor-κB via endogenous tumor necrosis factor α regulates survival of axotomized adult sensory neurons. J Neurosci 25:1682–1690. doi:10.1523/JNEUROSCI.3127-04.2005

    Article  PubMed  CAS  Google Scholar 

  10. Galluzzi L, Morselli E, Vicencio JM et al (2008) Life, death and burial: multifaceted impact of autophagy. Biochem Soc Trans 36:786–790. doi:10.1042/BST0360786

    Article  PubMed  CAS  Google Scholar 

  11. Hanlon CA, Niezgoda M, Rupprecht CE (2007) Rabies in terrestrial animals. In: Jackson AC, Wunner WH (eds) Rabies, 2 edn edn. Elsevier Academic Press, London, pp 201–258

    Google Scholar 

  12. Hanz S, Fainzilber M (2006) Retrograde signaling in injured nerve—the axon reaction revisited. J Neurochem 99:13–19. doi:10.1111/j.1471-4159.2006.04089.x

    Article  PubMed  CAS  Google Scholar 

  13. Havert MB, Schofield B, Griffin DE, Irani DN (2000) Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted Sindbis virus infection of mice. J Virol 74:5352–5356. doi:10.1128/JVI.74.11.5352-5356.2000

    Article  PubMed  CAS  Google Scholar 

  14. Hicks DJ, Nunez A, Healy DM, Brookes SM, Johnson N, Fooks AR (2009) Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 140:113–126

    Article  PubMed  CAS  Google Scholar 

  15. Jackson AC (2007) Human disease. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Elsevier Academic Press, London, pp 309–340

    Google Scholar 

  16. Jackson AC, Randle E, Lawrance G, Rossiter JP (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 14:368–375. doi:10.1080/13550280802216502

    Article  PubMed  CAS  Google Scholar 

  17. Johnson N, Mansfield KL, Hicks D et al (2008) Inflammatory responses in the nervous system of mice infected with a street isolate of rabies virus. In: Dodet B, Fooks AR, Müller T, Tordo N et al (eds) Towards the elimination of rabies in Eurasia. Kager, Basel, pp 65–72

    Google Scholar 

  18. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71. doi:10.1016/S0165-0270(00)00296-X

    Article  PubMed  CAS  Google Scholar 

  19. Kroemer G, Galluzzi L, Vandenabeele P et al (2008) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. doi:10.1038/cdd.2008.150

    Article  PubMed  Google Scholar 

  20. Kuzmin IV, Rupprecht CE (2007) Bat rabies. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Elsevier Academic Press, London, pp 259–307

    Google Scholar 

  21. Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124. doi:10.1016/S0074-7742(08)60183-X

    Article  PubMed  CAS  Google Scholar 

  22. Lycke E, Tsiang H (1987) Rabies virus infection of cultured rat sensory neurons. J Virol 61:2733–2741

    PubMed  CAS  Google Scholar 

  23. Mansfield KL, Johnson N, Nunez A, Hicks D, Jackson AC, Fooks AR (2008) Up-regulation of chemokine gene transcripts and T-cell infiltration into the central nervous system and dorsal root ganglia are characteristics of experimental European bat lyssavirus type 2 infection of mice. J Neurovirol 14:218–228. doi:10.1080/13550280802008297

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Gutierrez M, Castellanos JE (2007) Morphological and biochemical characterisation of sensory neurons infected in vitro with rabies virus. Acta Neuropathol 114:263–269. doi:10.1007/s00401-007-0222-9

    Article  PubMed  CAS  Google Scholar 

  25. Mitrabhakdi E, Shuangshoti S, Wannakrairot P et al (2005) Difference in neuropathogenetic mechanisms in human furious and paralytic rabies. J Neurol Sci 238:3–10. doi:10.1016/j.jns.2005.05.004

    Article  PubMed  Google Scholar 

  26. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518

    PubMed  CAS  Google Scholar 

  27. Murphy FA, Bauer SP, Harrison AK, Winn WC (1973) Comparative pathogenesis of rabies and rabies-like viruses: viral infection and transit from inoculation site to the central nervous system. Lab Invest 28:361–376

    PubMed  CAS  Google Scholar 

  28. Park CH, Kondo M, Inoue S et al (2006) The histopathogenesis of paralytic rabies in six-week-old C57BL/6 J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci 68:589–595. doi:10.1292/jvms.68.589

    Article  PubMed  Google Scholar 

  29. Perl DP, Good PF (1991) The pathology of rabies in the central nervous system. In: Baer GM (ed) The natural history of rabies, 2nd edn. CRC Press, Boca Raton, Florida, pp 163–190

    Google Scholar 

  30. Rasalingam P, Rossiter JP, Jackson AC (2005) Recombinant rabies virus vaccine strain SAD-L16 inoculated intracerebrally in young mice produces a severe encephalitis with extensive neuronal apoptosis. Can J Vet Res 69:100–105

    PubMed  Google Scholar 

  31. Rossiter JP, Jackson AC (2007) Pathology. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Elsevier Academic Press, London, pp 383–409

    Google Scholar 

  32. Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome in experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513–521. doi:10.1128/JVI.01677-07

    Article  PubMed  CAS  Google Scholar 

  33. Tang Y, Rampin O, Giuliano F, Ugolini G (1999) Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: retrograde transneuronal tracing with rabies virus. J Comp Neurol 414:167–192. doi:10.1002/(SICI)1096-9861(19991115)414:2<167::AID-CNE3>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  34. Tangchai P, Vejjajiva A (1971) Pathology of the peripheral nervous system in human rabies: a study of nine autopsy cases. Brain 94:299–306. doi:10.1093/brain/94.2.299

    Article  PubMed  CAS  Google Scholar 

  35. Tsiang H, Ceccaldi PE, Lycke E (1991) Rabies virus infection and transport in human sensory dorsal root ganglia neurons. J Gen Virol 72:1191–1194. doi:10.1099/0022-1317-72-5-1191

    Article  PubMed  Google Scholar 

  36. Van Gehuchten A, Nelis C (1900) Les lesions histologiques de la rage chez les animaux et chez l’homme. Bull Acad R Med Belg 14:31–66

    Google Scholar 

  37. Velandia ML, Perez-Castro R, Hurtado H, Castellanos JE (2007) Ultrastructural description of rabies virus infection in cultured sensory neurons. Mem Inst Oswaldo Cruz 102:441–447. doi:10.1590/S0074-02762007005000030

    Article  PubMed  Google Scholar 

  38. Weli SC, Scott CA, Ward CA, Jackson AC (2006) Rabies virus infection of primary neuronal cultures and adult mice: failure to demonstrate evidence of excitotoxicity. J Virol 80:10270–10273. doi:10.1128/JVI.01272-06

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for monoclonal antibody 5DF12 from Alexander I. Wandeler (Centre for Rabies Expertise, Canadian Food Inspection Agency, Nepean, Ontario). This work was supported by Canadian Institutes of Health Research Grant MOP-64376, and the Queen’s University Violet E. Powell Research Fund (all to A.C. Jackson). The authors wish to express their gratitude to Frederick A. Murphy (University of Texas Medical Branch, Galveston, TX, USA) for reviewing the electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossiter, J.P., Hsu, L. & Jackson, A.C. Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 118, 249–259 (2009). https://doi.org/10.1007/s00401-009-0503-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0503-6

Keywords

Navigation