Skip to main content

Advertisement

Log in

Amyloid-β accumulation caused by chloroquine injections precedes ER stress and autophagosome formation in rat skeletal muscle

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Chloroquine, an anti-malaria drug, is known to cause myopathy with rimmed vacuole formation. Although it disrupts the lysosomal degradation of proteins, the precise mechanism underlying muscle fiber degeneration has remained unclear. We investigated the temporal profiles of muscle fiber degeneration in chloroquine-treated rats, paying special attention to endoplasmic reticulum (ER) stress and autophagy. Male Wistar rats were intraperitoneally injected with chloroquine diphosphate at a dosage of 50 mg/kg body weight every day. We examined the localization and levels of proteins related to ER stress and autophagy in soleus muscle by means of immunohistochemistry and Western blotting at 3, 5, and 7 weeks after the beginning of the treatment. At 3 weeks, the levels of LC3-II and amyloid-β (Aβ) were increased. At 5 weeks, an unfolded protein response took place. At 7 weeks, rimmed vacuole formation became obvious. Interestingly, SERCA2, a Ca2+ -pump ATPase located in the endoplasmic/sarcoplasmic reticulum membrane was up-regulated at 5 weeks after treatment, but declined to the control level by 7 weeks. Taken together, these findings suggest that Aβ accumulation (at 3 weeks) caused by the disruption of lysosomal enzymes precedes an unfolded protein response (at 5 weeks). Next, activation of autophagy occurs (at 7 weeks), probably using sarcoplasmic reticulum membrane, the amount of which was increased. Chloroquine-treated rats could be useful for investigating the pathogenesis of diseases related to Aβ accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Askanas V, McFerrin J, Alvarez RB et al (1997) Beta APP gene transfer into cultured human muscle induces inclusion-body myositis aspects. Neuroreport 8:2155–2158

    Article  PubMed  CAS  Google Scholar 

  2. Askanas V, Engel WK (2001) Inclusion body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14

    PubMed  CAS  Google Scholar 

  3. Askanas V, Engel WK (2008) Inclusion body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains. Acta Neuropathol 116:583–595

    Article  PubMed  Google Scholar 

  4. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  5. Bernales S, Schuck S, Walter P (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3:285–287

    PubMed  Google Scholar 

  6. Butler D, Brown QB, Chin DJ et al (2005) Cellular responses to protein accumulation involve autophagy and lysosomal enzyme activation. Rejuvenation Res 8:227–237

    Article  PubMed  CAS  Google Scholar 

  7. Cardoso SM, Santana I, Swerdlow RH et al (2004) Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J Neurochem 89:1417–1426

    Article  PubMed  CAS  Google Scholar 

  8. Caspersen C, Wang N, Yao J et al (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  9. Christensen RA, Shtifman A, Allen PD et al (2004) Calcium dyshomeostasis in beta-amyloid and tau-bearing skeletal myotubes. J Biol Chem 279:53524–53532

    Article  PubMed  CAS  Google Scholar 

  10. Du H, Guo L, Fang F et al (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105

    Article  PubMed  CAS  Google Scholar 

  11. Fratta P, Engel WK, McFerrin J et al (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526

    PubMed  CAS  Google Scholar 

  12. Fukuchi K, Pham D, Hart M et al (1998) Amyloid-beta deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Am J Pathol 153:1687–1693

    PubMed  CAS  Google Scholar 

  13. Hamasaki M, Noda T, Baba M et al (2005) Starvation on triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6:56–65

    Article  PubMed  CAS  Google Scholar 

  14. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  15. Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  16. Ikezoe K, Furuya H, Ohyagi Y et al (2003) Dysferlin expression in tubular aggregates: their possible relationship to endoplasmic reticulum stress. Acta Neuropathol 105:603–609

    PubMed  CAS  Google Scholar 

  17. Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4:e36

    Article  PubMed  CAS  Google Scholar 

  18. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  19. Kitazawa M, Green KN, Caccamo A et al (2006) Genetically augmenting Abeta42 levels in skeletal muscle exacerbates inclusion body myositis-like pathology and motor deficits in transgenic mice. Am J Pathol 168:1986–1997

    Article  PubMed  CAS  Google Scholar 

  20. Koh YH, von Arnim CA, Hyman BT et al (2005) BACE is degraded via the lysosomal pathway. J Biol Chem 280:32499–32504

    Article  PubMed  CAS  Google Scholar 

  21. Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239

    Article  PubMed  CAS  Google Scholar 

  22. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  23. Lünemann JD, Schmidt J, Schmid D et al (2007) β-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol 61:476–483

    Article  PubMed  CAS  Google Scholar 

  24. Macdonald RD, Engel AG (1970) Experimental chloroquine myopathy. J Neuropathol Exp Neurol 29:479–499

    Article  PubMed  CAS  Google Scholar 

  25. Malicdan MC, Noguchi S, Nonaka I et al (2007) A Gne knockout mouse expressing human GNE D167 V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682

    Article  PubMed  CAS  Google Scholar 

  26. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  PubMed  CAS  Google Scholar 

  27. Meusser B, Hirsch C, Jarasch E et al (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    Article  PubMed  CAS  Google Scholar 

  28. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    PubMed  CAS  Google Scholar 

  29. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  PubMed  CAS  Google Scholar 

  30. Nagaraju K, Casciola-Rosen L, Lundberg I et al (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfuncton. Arthritis Rheum 52:1824–1835

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  32. Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  PubMed  CAS  Google Scholar 

  33. Pereira C, Ferreiro E, Cardoso SM et al (2004) Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer’s disease. J Mol Neurosci 23:97–104

    Article  PubMed  CAS  Google Scholar 

  34. Schmalbruch H (1980) The early changes in experimental myopathy induced by chloroquine and chlorphentermine. J Neuropathol Exp Neurol 39:65–81

    Article  PubMed  CAS  Google Scholar 

  35. Seglen PO, Berg TO, Blankson H et al (1996) Structural aspects of autophagy. Adv Exp Med Biol 389:103–111

    PubMed  CAS  Google Scholar 

  36. Stauber WT, Hedge AM, Trout JJ et al (1981) Inhibition of lysosomal function in red and white skeletal muscles by chloroquine. Exp Neurol 71:295–306

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki T, Nakagawa M, Yoshikawa A et al (2002) The first molecular evidence that autophagy relates rimmed vacuole formation in chloroquine myopathy. J Biochem (Tokyo) 131:647–651

    CAS  Google Scholar 

  38. Tanida I, Minematsu-Ikeguchi N, Ueno T et al (2005) Lysosomal turnover, but not a cellular level, of endogeneous LC3 is a marker for autophagy. Autophagy 1:84–91

    PubMed  CAS  Google Scholar 

  39. Tsuzuki K, Fukatsu R, Takamaru Y et al (1995) Amyloid beta protein in rat soleus muscle in chloroquine-induced myopathy using end-specific antibodies for A beta 40 and A beta 42: immunohistochemical evidence for amyloid beta protein. Neurosci Lett 202:77–80

    Article  PubMed  CAS  Google Scholar 

  40. Unterberger U, Hoftberger R, Gelpi E et al (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65:348–357

    Article  PubMed  CAS  Google Scholar 

  41. Vattemi G, Engel WK, McFerrin J et al (2004) Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am J Pathol 164:1–7

    PubMed  CAS  Google Scholar 

  42. Yorimitsu T, Nair U, Yang Z et al (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Cell 281:30299–30304

    CAS  Google Scholar 

  43. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

  44. Yu WH, Cuervo AM, Kumar A et al (2005) Macroautophagy—a novel beta-amyloid peptide generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Ikezoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikezoe, K., Furuya, H., Arahata, H. et al. Amyloid-β accumulation caused by chloroquine injections precedes ER stress and autophagosome formation in rat skeletal muscle. Acta Neuropathol 117, 575–582 (2009). https://doi.org/10.1007/s00401-009-0488-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0488-1

Keywords

Navigation