Skip to main content
Log in

Mitochondrial alterations in dorsal root ganglion cells in sporadic amyotrophic lateral sclerosis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Little information is available regarding the morphological changes in the mitochondria in amyotrophic lateral sclerosis (ALS). In particular, mitochondrial changes in dorsal root ganglion cells have not yet been examined. We therefore conducted an electron microscopic examination of the mitochondria in dorsal root ganglion cells in 11 sporadic ALS patients, and 12 age-matched, non-neurological control individuals in order to determine whether or not they are affected in ALS. In both the controls and ALS patients, unusual inclusion bodies were frequently observed in the mitochondria in the somata of the ganglion cells. The inclusions consisted of an aggregate of tubules measuring approximately 40 nm in diameter varying in size and number. Such inclusions were frequently present in the cristae and/or intermembrane space, often expanding to form large bundles in the dilated intermembrane space. These structures quite frequently protruded outward unilaterally or bilaterally and were partially surrounded by the outer membrane of the mitochondria. The number of inclusions was significantly higher in the ALS patients than in the controls (P < 0.0001). Regularly spaced transverse processes similar to the rungs of a ladder were occasionally observed in the intermembrane space, along with infrequent but markedly increased cristae and stubby mitochondria. We concluded that mitochondrial abnormalities may be involved in the degenerative processes in the dorsal root ganglion cells in sporadic ALS. These findings therefore suggest that ALS is a widespread, more generalized disorder than previously thought, and that the degeneration is not confined to the motor neuron system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bowling AC, Schulz JB, Brown RH, Beal MF (1993) SOD activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic ALS. J Neurochem 61:2322–2325

    Article  PubMed  CAS  Google Scholar 

  2. Brownell B, Oppenheimer DR, Hughes JT (1970) The central nervous system in motor neurone disease. J Neurol Neurosurg Psychiatr 33:338–357

    Article  PubMed  CAS  Google Scholar 

  3. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47:1060–1064

    PubMed  CAS  Google Scholar 

  4. Dal Canto MC, Gurney ME (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild-type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 676:25–40

    Article  PubMed  CAS  Google Scholar 

  5. Dhaliwal GK, Grewall RP (2000) Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 11:2507–2509

    Article  PubMed  CAS  Google Scholar 

  6. Dyck PJ, Stevens JC, Mulder DW, Espinosa RE (1975) Frequency of nerve fiber degeneration of peripheral motor and sensory neurons in amyotrophic lateral sclerosis: morphometry of deep and superficial peroneal nerves. Neurology 25:781–787

    PubMed  CAS  Google Scholar 

  7. Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:461–470

    PubMed  CAS  Google Scholar 

  8. Jaarsma D, Rognoni F, Duijn W, van Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102:293–305

    PubMed  CAS  Google Scholar 

  9. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250

    PubMed  CAS  Google Scholar 

  10. Lawyer T, Netsky MG (1953) Amyotrophic lateral sclerosis: a clinico-anatomic study of 53 cases. Arch Neurol 69:171–192

    Google Scholar 

  11. Matsui Y, Mozai T, Kakehi K (1985) Functional and morphometric study of the liver in motor neuron disease. J Neurol 232:15–19

    Article  Google Scholar 

  12. Nakano K, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44:103–106

    PubMed  CAS  Google Scholar 

  13. Page RW, Moskowitz RW, Nash RE, Roessmann U (1977) Lower motor neuron disease with spinocerebellar degeneration. Ann Neurol 2:524–530

    Article  PubMed  CAS  Google Scholar 

  14. Peña CE (1977) Virus-like particles in amyotrophic lateral sclerosis: electron microscopical study of a case. Ann Neurol 1:290–297

    Article  PubMed  Google Scholar 

  15. Peña CE (1980) Periodic units in the intracristal and envelope spaces of neuronal mitochondria. An artifact due to delayed fixation. Acta Neuropathol 51:249–250

    Article  PubMed  Google Scholar 

  16. Sasaki S, Hirano A (1983) Study of intracytoplasmic acidophilic granules in the human dorsal root ganglia. Neurol Med (Tokyo) 19:263–268

    Google Scholar 

  17. Sasaki S, Iwata M (1996) Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 47:535–540

    PubMed  CAS  Google Scholar 

  18. Sasaki S, Iwata M (1996) Ultrastructural study of synapses in the anterior neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 204:53–56

    Article  PubMed  CAS  Google Scholar 

  19. Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66:10–16

    Article  PubMed  Google Scholar 

  20. Sasaki S, Maruyama S (1993) A fine structural study of Onuf’s nucleus in sporadic amyotrophic lateral sclerosis. J Neurol Sci 119:28–37

    Article  PubMed  CAS  Google Scholar 

  21. Sasaki S, Tsutsumi Y, Yamane K, Sakuma H, Maruyama S (1992) Sporadic amyotrophic lateral sclerosis with extensive neurological involvement. Acta Neuropathol 84:211–215

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki S, Warita H, Murakami T, Abe K, Iwata M (2004) Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 107:461–474

    Article  PubMed  Google Scholar 

  23. Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39:203–216

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi H, Oyanagi K, Ohhama E, Ikuta F (1992) Clarke’s column in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 84:465–470

    Article  PubMed  CAS  Google Scholar 

  25. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    Article  PubMed  CAS  Google Scholar 

  26. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for General Scientific Research (C) from the Japanese Ministry of Education, Science and Culture. The authors thank Prof. A. Hirano (Division of Neuropathology, Montefiore Medical Center, New York, NY, USA) for his many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, S., Horie, Y. & Iwata, M. Mitochondrial alterations in dorsal root ganglion cells in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 114, 633–639 (2007). https://doi.org/10.1007/s00401-007-0299-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0299-1

Keywords

Navigation