Skip to main content
Log in

Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Cerebellar hypoplasia in experimental fetal alcohol syndrome (FAS) is associated with impaired insulin-stimulated survival signaling. In vitro studies demonstrated that ethanol inhibition of neuronal survival is mediated by apoptosis and mitochondrial dysfunction. Since insulin and insulin-like growth factors (IGFs) regulate energy metabolism, and ethanol can exert its toxic effects by causing oxidative damage to DNA and proteins, we further characterized the effects of chronic gestational exposure to ethanol on mitochondrial gene expression, and the degree to which ethanol inhibition of mitochondrial function is mediated by impaired insulin/IGF responsiveness. Pregnant Long-Evans rats were fed isocaloric liquid diets containing 0, 2, 4.5, 6.5, or 9.25% v/v ethanol from gestation day 6 through delivery. Cerebella harvested on postnatal day 1 were examined for indices of oxidative stress, and mRNA levels of mitochondrial, pro-oxidant, and pro-apoptosis gene expression. Rat primary cerebellar neuron cultures were used to characterize the effects of ethanol (50 mM for 96 h) on insulin and IGF stimulated mitochondrial function and ATP production. Ethanol-exposed cerebella had significantly reduced mRNA levels of mitochondrial genes encoding Complexes II-A, IV, and V, increased expression of p53 and NADPH oxidase (NOX) 1 and 3, and increased immunoreactivity for 4-hydroxy-2,3-nonenal (HNE) and 8-OHdG in cerebellar granule cells. The activations of p53 and NOX genes were highest in cerebella from pups exposed to the 6.5 or 9.25% ethanol containing diet, whereas the impairments in mitochondrial Complex IV and V expression were similar at low and high levels of ethanol exposure. In vitro experiments confirmed that ethanol treatment reduces neuronal expression of mitochondrial genes encoding Complexes IV and V, impairs mitochondrial function and ATP production, and increases HNE and 8-OHdG immunoreactivity, but they also showed that these effects were not insulin- or IGF-dependent. Together, the results suggest that mitochondrial dysfunction, oxidative stress, and DNA damage in FAS may be largely due to the toxic effects of ethanol rather than specific impairments in insulin or IGF signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ballinger SW, Patterson C, Yan CN, Doan R, Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman BA, Runge MS (2000) Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 86:960–966

    PubMed  CAS  Google Scholar 

  2. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC (2000) The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 21:895–902

    PubMed  CAS  Google Scholar 

  3. Burd L, Klug MG, Martsolf JT, Kerbeshian J (2003) Fetal alcohol syndrome: neuropsychiatric phenomics. Neurotoxicol Teratol 25:697–705

    Article  PubMed  CAS  Google Scholar 

  4. Camandola S, Poli G, Mattson MP (2000) The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1- binding activity through caspase activation in neurons. J Neurochem 74:159–168

    Article  PubMed  CAS  Google Scholar 

  5. Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228

    PubMed  Google Scholar 

  6. Chinopoulos C, Tretter L, Adam-Vizi V (1999) Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase. J Neurochem 73:220–228

    Article  PubMed  CAS  Google Scholar 

  7. Clarren SK, Alvord EJ, Sumi SM, Streissguth AP, Smith DW (1978) Brain malformations related to prenatal exposure to ethanol. J Pediatr 92:64–67

    Article  PubMed  CAS  Google Scholar 

  8. da Silva AM, Payao SL, Borsatto B, Bertolucci PH, Smith MA (2000) Quantitative evaluation of the rRNA in Alzheimer’s disease. Mech Ageing Dev 120:57–64

    Article  PubMed  Google Scholar 

  9. de la Monte S, Wands J (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    PubMed  Google Scholar 

  10. de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, Wands JR (2000) Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin Exp Res 24:716–726

    Article  PubMed  Google Scholar 

  11. de la Monte SM, Ganju N, Wands JR (1999) Microtiter immunocytochemical ELISA assay: a novel and highly sensitive method of quantifying immunoreactivity. Biotecniques 26:1073–1076

    Google Scholar 

  12. de la Monte SM, Neely TR, Cannon J, Wands JR (2001) Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol Life Sci 58:1950–1960

    Article  PubMed  Google Scholar 

  13. de la Monte SM, Wands JR (2001) Mitochondrial DNA damage and impaired mitochondrial function contribute to apoptosis of insulin-stimulated ethanol-exposed neuronal cells. Alcohol Clin Exp Res 25:898–906

    Google Scholar 

  14. de la Monte SM, Wands JR (2002) Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. CMLS Cell Mol Life Sci 59:882–893

    Article  Google Scholar 

  15. de la Monte SM, Xu XJ, Wands JR (2005) Ethanol inhibits insulin expression and actions in the developing brain. Cell Mol Life Sci 62:1131–1145

    Article  PubMed  CAS  Google Scholar 

  16. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187

    PubMed  CAS  Google Scholar 

  17. Hallak H, Seiler AE, Green JS, Henderson A, Ross BN, Rubin R (2001) Inhibition of insulin-like growth factor-I signaling by ethanol in neuronal cells. Alcohol Clin Exp Res 25:1058–1064

    Article  PubMed  CAS  Google Scholar 

  18. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  19. Hong-Brown LQ, Frost RA, Lang CH (2001) Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res 25:1373–1382

    Article  PubMed  CAS  Google Scholar 

  20. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, Price MT, Stefovska V, Horster F, Tenkova T, Dikranian K, Olney JW (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060

    Article  PubMed  CAS  Google Scholar 

  21. Karl PI, Fisher SE (1993) Ethanol alters hormone production in cultured human placental trophoblasts. Alcohol Clin Exp Res 17:816–821

    Article  PubMed  CAS  Google Scholar 

  22. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 97:9902–9906

    Article  PubMed  CAS  Google Scholar 

  23. Lee RD, An SM, Kim SS, Rhee GS, Kwack SJ, Seok JH, Chae SY, Park CH, Choi YW, Kim HS, Cho HY, Lee BM, Park KL (2005) Neurotoxic effects of alcohol and acetaldehyde during embryonic development. J Toxicol Environ Health A 68:2147–2162

    PubMed  Google Scholar 

  24. Lewis PD (1985) Neuropathological effects of alcohol on the developing nervous system. Alcohol Alcohol 20:195–200

    PubMed  CAS  Google Scholar 

  25. Liesi P (1997) Ethanol-exposed central neurons fail to migrate and undergo apoptosis. J Neurosci Res 48:439–448

    Article  PubMed  CAS  Google Scholar 

  26. Maier SE, Cramer JA, West JR, Sohrabji F (1999) Alcohol exposure during the first two trimesters equivalent alters granule cell number and neurotrophin expression in the developing rat olfactory bulb. J Neurobiol 41:414–423

    Article  PubMed  CAS  Google Scholar 

  27. Maier SE, Miller JA, Blackwell JM, West JR (1999) Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge-like alcohol exposure during brain development. Alcohol Clin Exp Res 23:726–734

    PubMed  CAS  Google Scholar 

  28. Maier SE, West JR (2001) Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol 23:49–57

    Article  PubMed  CAS  Google Scholar 

  29. Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:20

    Article  PubMed  CAS  Google Scholar 

  30. Mattson SN, Schoenfeld AM, Riley EP (2001) Teratogenic effects of alcohol on brain and behavior. Alcohol Res Health 25:185–191

    PubMed  CAS  Google Scholar 

  31. Minana R, Climent E, Barettino D, Segui JM, Renau-Piqueras J, Guerri C (2000) Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development. J Neurochem 75:954–964

    Article  PubMed  CAS  Google Scholar 

  32. Munzel T, Daiber A, Mulsch A (2005) Explaining the phenomenon of nitrate tolerance. Circ Res 97:618–628

    Article  PubMed  CAS  Google Scholar 

  33. Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10:816–825

    PubMed  CAS  Google Scholar 

  34. O’Malley KD, Nanson J (2002) Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Can J Psychiatry 47:349–354

    PubMed  Google Scholar 

  35. Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C (2000) Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis 5:515–521

    Article  PubMed  CAS  Google Scholar 

  36. Ramachandran V, Perez A, Chen J, Senthil D, Schenker S, Henderson GI (2001) In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin Exp Res 25:862–871

    Article  PubMed  CAS  Google Scholar 

  37. Soscia SJ, Tong M, Xu XJ, Cohen AC, Chu J, Wands JR, de la Monte SM (2006) Chronic gestational exposure to ethanol causes insulin and IGF resistance and impairs acetylcholine homeostasis in the brain. Cell Mol Life Sci 63:2039–2056

    Article  PubMed  CAS  Google Scholar 

  38. Swanson DJ, King MA, Walker DW, Heaton MB (1995) Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcohol Clin Exp Res 19:1252–1260

    Article  PubMed  CAS  Google Scholar 

  39. Volk B (1984) Cerebellar histogenesis and synaptic maturation following pre- and postnatal alcohol administration. An electron-microscopic investigation of the rat cerebellar cortex. Acta Neuropathol 63:57–65

    Article  PubMed  CAS  Google Scholar 

  40. Xu J, Yeon JE, Chang H, Tison G, Chen GJ, Wands J, de la Monte S (2003) Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase. J Biol Chem 278:26929–26937

    Article  PubMed  CAS  Google Scholar 

  41. Yanni PA, Lindsley TA (2000) Ethanol inhibits development of dendrites and synapses in rat hippocampal pyramidal neuron cultures. Brain Res Dev Brain Res 120:233–243

    Article  PubMed  CAS  Google Scholar 

  42. Zhang FX, Rubin R, Rooney TA (1998) Ethanol induces apoptosis in cerebellar granule neurons by inhibiting insulin-like growth factor 1 signaling. J Neurochem 71:196–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants AA02666, AA-02169, AA-11431, AA12908, and K24 AA-16126 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. de la Monte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, J., Tong, M. & de la Monte, S.M. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol 113, 659–673 (2007). https://doi.org/10.1007/s00401-007-0199-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0199-4

Keywords

Navigation