Skip to main content

Advertisement

Log in

Effects of Cerebrolysin™ on neurogenesis in an APP transgenic model of Alzheimer’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Cerebrolysin (CBL) is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative alterations in Alzheimer’s disease (AD). We have previously shown that in the amyloid precursor protein (APP) transgenic (tg) mouse model of AD, CBL improves synaptic plasticity and behavioral performance. However, the mechanisms are not completely clear. The neuroprotective effects of CBL might be related to its ability to promote neurogenesis in the hippocampal subgranular zone (SGZ) of the dentate gyrus (DG). To study this possibility, tg mice expressing mutant APP under the Thy-1 promoter were injected with BrdU and treated with CBL for 1 and 3 months. Compared to non-tg controls, vehicle-treated APP tg mice showed decreased numbers of BrdU-positive (+) and doublecortin+ (DCX) neural progenitor cells (NPC) in the SGZ. In contrast, APP tg mice treated with CBL showed a significant increase in BrdU+ cells, DCX+ neuroblasts and a decrease in TUNEL+ and activated caspase-3 immunoreactive NPC. CBL did not change the number of proliferating cell nuclear antigen+ (PCNA) NPC or the ratio of BrdU+ cells converting to neurons and astroglia in the SGZ cells in the APP tg mice. Taken together, these studies suggest that CBL might rescue the alterations in neurogenesis in APP tg mice by protecting NPC and decreasing the rate of apoptosis. The improved neurogenesis in the hippocampus of CBL-treated APP tg mice might play an important role in enhancing synaptic formation and memory acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897

    Article  PubMed  CAS  Google Scholar 

  2. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature

  3. Benedito AB, Lehtinen M, Massol R, Lopes UG, Kirchhausen T, Rao A, Bonni A (2005) The transcription factor NFAT3 mediates neuronal survival. J Biol Chem 280:2818–2825

    Article  PubMed  CAS  Google Scholar 

  4. Biebl M, Cooper CM, Winkler J, Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  PubMed  CAS  Google Scholar 

  5. Biebl M, Winner B, Winkler J (2005) Caspase inhibition decreases cell death in regions of adult neurogenesis. Neuroreport 16:1147–1150

    Article  PubMed  CAS  Google Scholar 

  6. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci 4:233–234

    Article  PubMed  CAS  Google Scholar 

  7. Chana G, Landau S, Beasley C, Everall IP, Cotter D (2003) Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 53:1086–1098

    Article  PubMed  Google Scholar 

  8. Chana G, Masliah E, Langford D, Adame A, Crews L, Grant I, Cherner M, Lazzaretto D, Heaton RK, Ellis RJ, Everall I (2006) Cognitive deficits in HIV+ methamphetamine users is associated with loss of interneurons in the frontal cortex. Neurology (submitted)

  9. Chen H, Tung YC, Li B, Iqbal K, Grundke-Iqbal I (2006) Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging

  10. Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol 167:151–159

    PubMed  CAS  Google Scholar 

  11. Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res Mol Brain Res 137:193–201

    Article  PubMed  CAS  Google Scholar 

  12. Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21

    Article  PubMed  CAS  Google Scholar 

  13. Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127:601–609

    Article  PubMed  CAS  Google Scholar 

  14. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70–83

    Article  PubMed  Google Scholar 

  15. Enguita M, DeGregorio-Rocasolano N, Abad A, Trullas R (2005) Glycogen synthase kinase 3 activity mediates neuronal pentraxin 1 expression and cell death induced by potassium deprivation in cerebellar granule cells. Mol Pharmacol 67:1237–1246

    Article  PubMed  CAS  Google Scholar 

  16. Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

    Article  PubMed  CAS  Google Scholar 

  17. Francis-Turner L, Valouskova V (1996) Nerve growth factor and nootropic drug Cerebrolysin but not fibroblast growth factor can reduce spatial memory impairment elicited by fimbria-fornix transection: short-term study. Neurosci Lett 202:1–4

    Article  Google Scholar 

  18. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881

    Article  PubMed  CAS  Google Scholar 

  19. Gutmann B, Hutter-Paier B, Skofitsch G, Windisch M, Gmeinbauer R (2002) In vitro models of brain ischemia: the peptidergic drug cerebrolysin protects cultured chick cortical neurons from cell death. Neurotox Res 4:59–65

    Article  PubMed  CAS  Google Scholar 

  20. Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M (2001) Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. J Neural Transm 108:459–473

    Article  PubMed  CAS  Google Scholar 

  21. Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524

    Article  PubMed  CAS  Google Scholar 

  22. Hyman B, Gomez-Isla T (1994) Alzheimer’s disease is a laminar regional and neural system specific disease, not a global brain disease. Neurobiol Aging 15:353–354

    Article  PubMed  CAS  Google Scholar 

  23. Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA (2004) Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci USA 101:13363–13367

    Article  PubMed  CAS  Google Scholar 

  24. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP Processing and Synaptic Function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  25. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143

    Article  PubMed  Google Scholar 

  26. Kenney AM, Widlund HR, Rowitch DH (2004) Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131:217–228

    Article  PubMed  CAS  Google Scholar 

  27. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231–232

    Article  PubMed  CAS  Google Scholar 

  28. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  PubMed  CAS  Google Scholar 

  29. Mallory M, Honer W, Hsu L, Johnson R, Masliah E (1999) In vitro synaptotrophic effects of Cerebrolysin in NT2N cells. Acta Neuropathol 97:437–446

    Article  PubMed  CAS  Google Scholar 

  30. Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10:509–519

    PubMed  CAS  Google Scholar 

  31. Masliah E, Armasolo F, Veinbergs I, Mallory M, Samuel W (1999) Cerebrolysin ameliorates performance deficits and neuronal damage in apolipoprotein E-deficient mice. Pharmacol Biochem Behav 62:239–245

    Article  PubMed  CAS  Google Scholar 

  32. McKenzie G, Ward G, Stallwood Y, Briend E, Papadia S, Lennard A, Turner M, Champion B, Hardingham GE (2006) Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol 7:10

    Article  PubMed  CAS  Google Scholar 

  33. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24:1571–1583

    Article  PubMed  CAS  Google Scholar 

  34. Mucke L, Abraham C, Ruppe M, Rockenstein E, Toggas S, Alford M, Masliah E (1995) Protection against HIV-1 gp120-induced brain damage by neuronal overexpression of human amyloid precursor protein (hAPP). J Exp Med 181:1551–1556

    Article  PubMed  CAS  Google Scholar 

  35. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  36. Reinprecht I, Gschanes A, Windisch M, Fachbach G (1999) Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 24-month-old rats. Histochem J 31:395–401

    Article  PubMed  CAS  Google Scholar 

  37. Rockenstein E, Adame A, Mante M, Larrea G, Crews L, Windisch M, Moessler H, Masliah E (2005) Amelioration of the cerebrovascular amyloidosis in a transgenic model of Alzheimer’s disease with the neurotrophic compound cerebrolysin. J Neural Transm 112:269–282

    Article  PubMed  CAS  Google Scholar 

  38. Rockenstein E, Adame A, Mante M, Moessler H, Windisch M, Masliah E (2003) The neuroprotective effects of Cerebrolysin trade mark in a transgenic model of Alzheimer’s disease are associated with improved behavioral performance. J Neural Transm 110:1313–1327

    Article  PubMed  CAS  Google Scholar 

  39. Rockenstein E, Mallory M, Mante M, Alford M, Windisch M, Moessler H, Masliah E (2002) Effects of Cerebrolysin on amyloid-beta deposition in a transgenic model of Alzheimer’s disease. J Neural Transm Suppl:327–336

    Google Scholar 

  40. Rockenstein E, Mallory M, Mante M, Sisk A, Masliah E (2001) Early formation of mature amyloid-b proteins deposits in a mutant APP transgenic model depends on levels of Ab1–42. J Neurosci Res 66:573–582

    Article  PubMed  CAS  Google Scholar 

  41. Rockenstein E, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid b protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270:28257–28267

    Article  PubMed  CAS  Google Scholar 

  42. Rockenstein E, Torrance M, Mante M, Adame A, Paulino A, Rose JB, Crews L, Moessler H, Masliah E (2006) Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer’s disease. J Neurosci Res

  43. Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56:541–569

    Article  PubMed  CAS  Google Scholar 

  44. Ruther E, Ritter R, Apecechea M, Freitag S, Windisch M (1994) Efficacy of Cerebrolysin in Alzheimer’s disease. In: Jellinger K, Ladurner G, Windisch M (eds) New trends in the diagnosis and therapy of Alzheimer’s disease. Springer, Berlin Heidelberg New York, pp 131–141

    Google Scholar 

  45. Ruther E, Ritter R, Apecechea M, Freytag S, Gmeinbauer R, Windisch M (2000) Sustained improvements in patients with dementia of Alzheimer’s type (DAT) 6 months after termination of Cerebrolysin therapy. J Neural Transm 107:815–829

    Article  PubMed  CAS  Google Scholar 

  46. Ruther E, Ritter R, Apecechea M, Freytag S, Windisch M (1994) Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer’s type (SDAT). Pharmacopsychiatry 27:32–40

    Article  PubMed  CAS  Google Scholar 

  47. Ryder J, Su Y, Liu F, Li B, Zhou Y, Ni B (2003) Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun 312:922–929

    Article  PubMed  CAS  Google Scholar 

  48. Satou T, Itoh T, Tamai Y, Ohde H, Anderson AJ, Hashimoto S (2000) Neurotrophic effects of FPF-1070 (Cerebrolysin) on cultured neurons from chicken embryo dorsal root ganglia, ciliary ganglia, and sympathetic trunks. J Neural Transm 107:1253–1262

    Article  PubMed  CAS  Google Scholar 

  49. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738 Suppl):A23–A31

    PubMed  CAS  Google Scholar 

  50. Sinha S, Anderson J, John V, McConlogue L, Basi G, Thorsett E, Schenk D (2000) Recent advances in the understanding of the processing of APP to beta amyloid peptide. Ann NY Acad Sci 920:206–208

    Article  PubMed  CAS  Google Scholar 

  51. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, John V et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540

    Article  PubMed  CAS  Google Scholar 

  52. Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I (2003) The dentate gyrus neurogenesis: a therapeutic target for Alzheimer’s disease. Acta Neuropathol (Berl) 105:225–232

    CAS  Google Scholar 

  53. Terry R, Hansen L, Masliah E (1994) Structural basis of the cognitive alterations in Alzheimer disease. In: Terry R, Katzman R (eds) Alzheimer disease. Raven Press, New York, pp 179–196

    Google Scholar 

  54. Tesco G, Tanzi RE (2000) GSK3 beta forms a tetrameric complex with endogenous PS1-CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutatuions. Ann NY Acad Sci 920:227–232

    Article  PubMed  CAS  Google Scholar 

  55. Toggas S, Masliah E, Rockenstein E, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Article  PubMed  CAS  Google Scholar 

  56. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    Article  PubMed  Google Scholar 

  57. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  58. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  59. Veinbergs I, Mante M, Mallory M, Masliah E (2000) Neurotrophic effects of Cerebrolysin in animal models of excitotoxicity. J Neural Transm Suppl 59:273–280

    PubMed  CAS  Google Scholar 

  60. Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305–312

    Article  PubMed  CAS  Google Scholar 

  61. Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, Younkin LH, DeGasperi R, Gama Sosa MA, Robakis NK, Haroutunian V, Elder GA (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237

    Article  PubMed  CAS  Google Scholar 

  62. Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278:344–352

    Article  PubMed  CAS  Google Scholar 

  63. Windholz E, Gschanes A, Windisch M, Fachbach G (2000) Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 6-week-old rats. Histochem J 32:79–84

    Article  PubMed  CAS  Google Scholar 

  64. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    PubMed  CAS  Google Scholar 

  65. Wu Q, Combs C, Cannady SB, Geldmacher DS, Herrup K (2000) Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons. Neurobiol Aging 21:797–806

    Article  PubMed  CAS  Google Scholar 

  66. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40:401–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AG05131 and by a grant from EBEWE Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Masliah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockenstein, E., Mante, M., Adame, A. et al. Effects of Cerebrolysin™ on neurogenesis in an APP transgenic model of Alzheimer’s disease. Acta Neuropathol 113, 265–275 (2007). https://doi.org/10.1007/s00401-006-0166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0166-5

Keywords

Navigation