Skip to main content
Log in

Expression of α2-macroglobulin, neutrophil elastase, and interleukin-1α differs in early-stage and late-stage atherosclerotic lesions in the arteries of the circle of Willis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Different types of atherosclerotic (AS) lesions can be distinguished histologically and represent different stages of AS plaque development. Late-stage lesions more frequently develop complications such as plaque rupture and thrombosis with vessel occlusion than early AS lesions. To clarify whether protective, destructive, and inflammatory proteins are differentially expressed in early-stage and late-stage AS plaques we examined the proteinase inhibitor α2-macroglobulin (A2M), the neutrophil elastase (NE)—an enzyme degrading elastin and collagen fibers—and the proinflammatory protein interleukin-1α (IL-1α) in all types of AS plaques in the arteries of the circle of Willis from 78 human autopsy cases of both genders (61–91 years of age). Paraffin sections of AS plaques were immunostained with antibodies directed against A2M, NE and IL-1α. In initial AS lesions A2M was found, whereas NE and IL-1α were absent. NE and IL-1α became detectable as soon as a significant number of macrophages occurred within AS lesions. With increasing histopathological type of AS lesions, a marked increase of the area of the plaque exhibiting NE and IL-1α was observed. The area which exhibits A2M in AS plaques, on the other hand, did not vary significantly between the different stages. Thus, our results indicate a disproportionately high increase of the destructive enzyme NE and the proinflammatory protein IL-1α in relation to A2M with the progression of the grade of AS lesions pointing to the transgression of the protective capacity of A2M by NE and IL-1α in late-stage plaques. Therefore, our findings support the hypothesis that NE-induced tissue damage in late-stage AS plaques contributes to the development of plaque rupture and subsequent thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe K, Yamamoto K, Sinohara H (1989) Proteinase inhibitory spectrum of mouse murinoglobulin and alpha-macroglobulin. J Biochem 106:564–568

    PubMed  CAS  Google Scholar 

  2. Barrett AJ, Starkey PM (1973) The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 133:709–724

    PubMed  CAS  Google Scholar 

  3. Bieth JG (2001) The elastases. J Soc Biol 195:173–179

    PubMed  CAS  Google Scholar 

  4. Birkenmeier G, Stigbrand T (1993) Production of conformation-specific monoclonal antibodies against alpha 2 macroglobulin and their use for quantitation of total and transformed alpha 2 macroglobulin in human blood. J Immunol Methods 162:59–67

    Article  PubMed  CAS  Google Scholar 

  5. Borth W (1992) Alpha 2-macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6:3345–3353

    PubMed  CAS  Google Scholar 

  6. Chi H, Messas E, Levine RA, Graves DT, Amar S (2004) Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 110:1678–1685

    Article  PubMed  CAS  Google Scholar 

  7. Deguchi JO, Aikawa E, Libby P, Vachon JR, Inada M, Krane SM, Whittaker P, Aikawa M (2005) Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation 112:2708–2715

    Article  PubMed  CAS  Google Scholar 

  8. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  9. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S-455S

    PubMed  CAS  Google Scholar 

  10. Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P (2003) Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation 107:2829–2836

    Article  PubMed  CAS  Google Scholar 

  11. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Libby P (1995) Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions. Ann NY Acad Sci 748:501–507

    Article  PubMed  CAS  Google Scholar 

  12. Grabowska-Bochenek R, Drozdz M, Kopieczna-Grzebieniak E, Piekarski M (1990) Concentration of some proteinase inhibitors: alpha 1-antitrypsin and alpha 2-macroglobulin in rabbit blood serum in two models of experimental atherosclerosis. Acta Biochim Pol 37:125–127

    PubMed  CAS  Google Scholar 

  13. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615

    Article  PubMed  CAS  Google Scholar 

  14. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    PubMed  CAS  Google Scholar 

  15. Hollander W, Colombo MA, Kirkpatrick B, Paddock J (1979) Soluble proteins in the human atherosclerotic plaque. With spectral reference to immunoglobulins, C3-complement component, alpha 1-antitrypsin and alpha 2-macroglobulin. Atherosclerosis 34:391–405

    Article  PubMed  CAS  Google Scholar 

  16. Kovanen PT (2005) Pathogenesis of carotid atherosclerosis: molecular and genetic aspects. In: Kalimo H (ed) Pathology and genetics: cerebrovascular diseases. ISN Neuropath Press, Basel, pp 74–84

    Google Scholar 

  17. Larionov S, Dedeck O, Birkenmeier G, Orantes M, Ghebremedhin E, Thal DR (2006) The intronic deletion polymorphism of the α2-macroglobulin gene modulates the severity and extent of atherosclerosis in the circle of Willis. Neuropathol Appl Neurobiol 32:451–454

    Article  PubMed  CAS  Google Scholar 

  18. Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S, Fan J (2006) Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation 113:1993–2001

    Article  PubMed  CAS  Google Scholar 

  19. Libby P, Sukhova G, Lee RT, Galis ZS (1995) Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol 25(Suppl 2):S9–S12

    Article  PubMed  CAS  Google Scholar 

  20. Lord PC, Wilmoth LM, Mizel SB, McCall CE (1991) Expression of interleukin-1 alpha and beta genes by human blood polymorphonuclear leukocytes. J Clin Invest 87:1312–1321

    Article  PubMed  CAS  Google Scholar 

  21. Lusis AJ, Mar R, Pajukanta P (2004) Genetics of atherosclerosis. Annu Rev Genomics Hum Gene 5:189–218

    Article  CAS  Google Scholar 

  22. Moyer CF, Sajuthi D, Tulli H, Williams JK (1991) Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am J Pathol 138:951–960

    PubMed  CAS  Google Scholar 

  23. Novelli G, Borgiani P, Giardina E, Mango R, Contino G, Romeo F, Mehta JL (2003) Role of genetics in prevention of coronary atherosclerosis. Curr Opin Cardiol 18:368–371

    Article  PubMed  Google Scholar 

  24. Pirillo A, Ghiselli G (2000) Enhanced macrophage uptake of elastase-modified high-density lipoproteins. Biochem Biophys Res Commun 271:386–391

    Article  PubMed  CAS  Google Scholar 

  25. Polacek D, Byrne RE, Scanu AM (1988) Modification of low density lipoproteins by polymorphonuclear cell elastase leads to enhanced uptake by human monocyte-derived macrophages via the low density lipoprotein receptor pathway. J Lipid Res 29:797–808

    PubMed  CAS  Google Scholar 

  26. Smith EB, Ashall C (1984) Compartmentalization of water in human atherosclerotic lesions. Changes in distribution and exclusion volumes for plasma macromolecules. Arteriosclerosis 4:21–27

    PubMed  CAS  Google Scholar 

  27. Starkey PM, Barrett AJ (1976) Human lysosomal elastase. Catalytic and immunological properties. Biochem J 155:265–271

    PubMed  CAS  Google Scholar 

  28. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  29. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Jr. Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531

    PubMed  CAS  Google Scholar 

  30. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178

    PubMed  CAS  Google Scholar 

  31. Stein O, Thiery J, Stein Y (2002) Is there a genetic basis for resistance to atherosclerosis? Atherosclerosis 160:1–10

    Article  PubMed  CAS  Google Scholar 

  32. Thal DR, Schober R, Birkenmeier G (1997) The subunits of alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein, native and transformed alpha2-macroglobulin and interleukin 6 in Alzheimer’s disease. Brain Res 777:223–227

    Article  PubMed  CAS  Google Scholar 

  33. Thal DR, Barduzal S, Franz K, Herrmann G, Bode F, Lambrecht E, Schlote W (2001) Giant cell arteritis in a 19-year-old woman associated with vertebral artery aneurysm and subarachnoid hemorrhage. Clin Neuropathol 20:80–86

    PubMed  CAS  Google Scholar 

  34. Thiery J, Teupser D (1998) Genetic factors in the development of atherosclerosis. Z Kardiol 87:777–788

    Article  PubMed  CAS  Google Scholar 

  35. Tiggelman AM, Boers W, Moorman AF, de Boer PA, Van der Loos CM, Rotmans JP, Chamuleau RA (1996) Localization of alpha 2-macroglobulin protein and messenger RNA in rat liver fibrosis: evidence for the synthesis of alpha 2-macroglobulin within Schistosoma mansoni egg granulomas. Hepatology 23:1260–1267

    PubMed  CAS  Google Scholar 

  36. Tipping PG, Hancock WW (1993) Production of tumor necrosis factor and interleukin-1 by macrophages from human atheromatous plaques. Am J Pathol 142:1721–1728

    PubMed  CAS  Google Scholar 

  37. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    PubMed  CAS  Google Scholar 

  38. Waehre T, Yndestad A, Smith C, Haug T, Tunheim SH, Gullestad L, Froland SS, Semb AG, Aukrust P, Damas JK (2004) Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation 109:1966–1972

    Article  PubMed  CAS  Google Scholar 

  39. Werb Z, Burleigh MC, Barrett AJ, Starkey PM (1974) The interaction of alpha2-macroglobulin with proteinases. Binding and inhibition of mammalian collagenases and other metal proteinases. Biochem J 139:359–368

    PubMed  CAS  Google Scholar 

  40. Young RE, Thompson RD, Larbi KY, La M, Roberts CE, Shapiro SD, Perretti M, Nourshargh S (2004) Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol 172:4493–4502

    PubMed  CAS  Google Scholar 

  41. Zhu YK, Liu XD, Skold CM, Umino T, Wang HJ, Spurzem JR, Kohyama T, Ertl RF, Rennard SI (2001) Synergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture. Am J Physiol Lung Cell Mol Physiol 281:L868–L878

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mrs. A. Hryschyk, Mrs. B. Vilz and Mr. H-U. Klatt for technical assistance.

This work was supported by BONFOR-grants O-154.0041 and O-154.0062 (D.R.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Rudolf Thal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larionov, S., Dedeck, O., Birkenmeier, G. et al. Expression of α2-macroglobulin, neutrophil elastase, and interleukin-1α differs in early-stage and late-stage atherosclerotic lesions in the arteries of the circle of Willis. Acta Neuropathol 113, 33–43 (2007). https://doi.org/10.1007/s00401-006-0134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0134-0

Keywords

Navigation