Skip to main content

Advertisement

Log in

Neuropathology of Alzheimer disease: pathognomonic but not pathogenic

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuropathological changes in subjects with dementia are, by definition, end-stage phenomena. While such changes allow case characterization and lend themselves to disease classification and modeling, the lesions themselves are not etiological. This truth would appear to be self-evident, yet the medical and scientific literature suggests otherwise. Indeed it is now customary to view amyloid plaques in Alzheimer disease as primary etiological, neurotoxic lesions and, hence, removing them (e.g., by immunotherapy) is believed to lead to clinical improvement. The foundation for this line of thinking lies in the existence of rare kindreds with mutations in amyloid-β, or mutations believed to be involved in the processing of amyloid-β, and then the extrapolation of the inherited condition to sporadic disease. We believe that this overall construct ignores early events that are more critical to onset and progression of sporadic disease. Likewise, we have studied subjects with sporadic Alzheimer disease, as well as early onset familial Alzheimer disease and Down’s syndrome, over a spectrum of ages, and have found that markers of oxidative stress precede amyloid deposits in all three conditions. Amyloid and neurofibrillary pathology in the Alzheimer brain show a decrease in oxidative stress relative to vulnerable but morphologically intact neurons, suggesting that neurodegenerative lesions are compensatory phenomena, and thus manifestations of cellular adaptation. The pathology of neurodegenerative diseases should be viewed as the end-stage consequence, as opposed to cause, of the disease processes, so that early disease processes that are amenable to intervention can be properly recognized and treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anonymous (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–S2

  2. Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zeitschr Psychiatr 64:146–148

    Google Scholar 

  3. Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, Stopa EG, Johanson CE (2003) Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis 5:171–177

    PubMed  CAS  Google Scholar 

  4. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  PubMed  CAS  Google Scholar 

  5. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    PubMed  CAS  Google Scholar 

  6. Bickford PC, Gould T, Briederick L, Chadman K, Pollock A, Young D, Shukitt-Hale B, Joseph J (2000) Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res 866:211–217

    Article  PubMed  CAS  Google Scholar 

  7. Brunkan AL, Goate AM (2005) Presenilin function and gamma-secretase activity. J Neurochem 93:769–792

    Article  PubMed  CAS  Google Scholar 

  8. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B, Jucker M (1998) Neuron loss in APP transgenic mice. Nature 395:755–756

    Article  PubMed  CAS  Google Scholar 

  9. Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  PubMed  CAS  Google Scholar 

  10. Canning DR, McKeon RJ, DeWitt DA, Perry G, Wujek JR, Frederickson RC, Silver J (1993) beta-Amyloid of Alzheimer’s disease induces reactive gliosis that inhibits axonal outgrowth. Exp Neurol 124:289–298

    Article  PubMed  CAS  Google Scholar 

  11. Castellani R, Smith MA, Richey PL, Kalaria R, Gambetti P, Perry G (1995) Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Res 696:268–271

    Article  PubMed  CAS  Google Scholar 

  12. Castellani RJ, Smith MA, Perry G, Friedland RP (2004) Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer’s disease pathogenesis. Neurobiol Aging 25:599–602; discussion 603–594

    Google Scholar 

  13. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    Article  PubMed  CAS  Google Scholar 

  14. Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 275:19439–19442

    Article  PubMed  CAS  Google Scholar 

  15. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58:376–388

    Article  PubMed  CAS  Google Scholar 

  16. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522

    Article  PubMed  CAS  Google Scholar 

  17. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    Article  PubMed  CAS  Google Scholar 

  18. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24:415–420

    Article  PubMed  CAS  Google Scholar 

  19. Ekinci FJ, Shea TB (2000) beta-Amyloid-induced tau phosphorylation does not correlate with degeneration in cultured neurons. J Alzheimers Dis 2:7–15

    PubMed  CAS  Google Scholar 

  20. Frautschy SA, Cole GM, Baird A (1992) Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. Am J Pathol 140:1389–1399

    PubMed  CAS  Google Scholar 

  21. Gerst JL, Siedlak SL, Nunomura A, Castellani R, Perry G, Smith MA (1999) Role of oxidative stress in frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):85–87

    Article  PubMed  CAS  Google Scholar 

  22. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    PubMed  CAS  Google Scholar 

  23. Gold G, Kovari E, Corte G, Herrmann FR, Canuto A, Bussiere T, Hof PR, Bouras C, Giannakopoulos P (2001) Clinical validity of A beta-protein deposition staging in brain aging and Alzheimer disease. J Neuropathol Exp Neurol 60:946–952

    PubMed  CAS  Google Scholar 

  24. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    Article  PubMed  CAS  Google Scholar 

  25. Gordon MN, King DL, Diamond DM, Jantzen PT, Boyett KV, Hope CE, Hatcher JM, DiCarlo G, Gottschall WP, Morgan D, Arendash GW (2001) Correlation between cognitive deficits and Abeta deposits in transgenic APP + PS1 mice. Neurobiol Aging 22:377–385

    Article  PubMed  CAS  Google Scholar 

  26. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  27. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  PubMed  CAS  Google Scholar 

  28. Hyman BT, Trojanowski JQ (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  PubMed  CAS  Google Scholar 

  29. Jimenez-Escrig A, Rabano A, Guerrero C, Simon J, Barquero MS, Guell I, Ginestal RC, Montero T, Orensanz L (2004) New V272A presenilin 1 mutation with very early onset subcortical dementia and parkinsonism. Eur J Neurol 11:663–669

    Article  PubMed  CAS  Google Scholar 

  30. Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry G, Smith MA (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol Aging 22:131–146

    Article  PubMed  CAS  Google Scholar 

  31. Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, Taglialatela G, Bickford PC (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18:8047–8055

    PubMed  CAS  Google Scholar 

  32. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19:8114–8121

    PubMed  CAS  Google Scholar 

  33. Kril JJ, Patel S, Harding AJ, Halliday GM (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol (Berl) 103:370–376

    Article  Google Scholar 

  34. Lee HG, Petersen RB, Zhu X, Honda K, Aliev G, Smith MA, Perry G (2003) Will preventing protein aggregates live up to its promise as prophylaxis against neurodegenerative diseases? Brain Pathol 13:630–638

    PubMed  CAS  Google Scholar 

  35. Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169

    Article  PubMed  CAS  Google Scholar 

  36. Long JM, Mouton PR, Jucker M, Ingram DK (1999) What counts in brain aging? Design-based stereological analysis of cell number. J Gerontol A Biol Sci Med Sci 54:B407–417

    PubMed  CAS  Google Scholar 

  37. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  PubMed  CAS  Google Scholar 

  38. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  39. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197

    Article  PubMed  CAS  Google Scholar 

  40. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964

    PubMed  CAS  Google Scholar 

  41. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    PubMed  CAS  Google Scholar 

  42. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  43. Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, Honda K, Smith MA, Perry G (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113

    Article  PubMed  CAS  Google Scholar 

  44. Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso N, Tabaton M (1998) Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 243:849–851

    Article  PubMed  CAS  Google Scholar 

  45. Odetti P, Garibaldi S, Norese R, Angelini G, Marinelli L, Valentini S, Menini S, Traverso N, Zaccheo D, Siedlak S, Perry G, Smith MA, Tabaton M (2000) Lipoperoxidation is selectively involved in progressive supranuclear palsy. J Neuropathol Exp Neurol 59:393–397

    PubMed  CAS  Google Scholar 

  46. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    PubMed  CAS  Google Scholar 

  47. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur J Pharmacol 207:367–368

    Article  PubMed  CAS  Google Scholar 

  48. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    PubMed  CAS  Google Scholar 

  49. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30:447–450

    Article  PubMed  CAS  Google Scholar 

  50. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    Article  PubMed  CAS  Google Scholar 

  51. Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ, Wiggert B, Petersen RB, Perry G (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145:42–47

    PubMed  CAS  Google Scholar 

  52. Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, Sayre LM, Perry G (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64:2660–2666

    PubMed  CAS  Google Scholar 

  53. Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215

    PubMed  CAS  Google Scholar 

  54. Smith MA, Casadesus G, Joseph JA, Perry G (2002) Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 33:1194–1199

    Article  PubMed  CAS  Google Scholar 

  55. Smith MJ, Kwok JB, McLean CA, Kril JJ, Broe GA, Nicholson GA, Cappai R, Hallupp M, Cotton RG, Masters CL, Schofield PR, Brooks WS (2001) Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol 49:125–129

    Article  PubMed  CAS  Google Scholar 

  56. Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398:522–525

    Article  PubMed  CAS  Google Scholar 

  57. Tabaton M, Piccini A (2005) Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer’s disease. Int J Exp Pathol 86:139–145

    Article  PubMed  CAS  Google Scholar 

  58. Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, Laitinen JT, Petersen RB, Smith MA (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem 275:5395–5399

    Article  PubMed  CAS  Google Scholar 

  59. Takeda A, Smith MA, Avila J, Nunomura A, Siedlak SL, Zhu X, Perry G, Sayre LM (2000) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 75:1234–1241

    Article  PubMed  CAS  Google Scholar 

  60. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  61. Walter MF, Mason PE, Mason RP (1997) Alzheimer’s disease amyloid beta peptide 25–35 inhibits lipid peroxidation as a result of its membrane interactions. Biochem Biophys Res Commun 233:760–764

    Article  PubMed  CAS  Google Scholar 

  62. Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PL, Shimohama S, Szweda LI, Kaminski MA, Avila J, Price DL, Cleveland DW, Sayre LM, Perry G (2002) High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J Biol Chem 277:4644–4648

    Article  PubMed  CAS  Google Scholar 

  63. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  PubMed  CAS  Google Scholar 

  64. Xia W, Zhang J, Kholodenko D, Citron M, Podlisny MB, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ (1997) Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272:7977–7982

    Article  PubMed  CAS  Google Scholar 

  65. Xuereb JH, Brayne C, Dufouil C, Gertz H, Wischik C, Harrington C, Mukaetova-Ladinska E, McGee MA, O’Sullivan A, O’Connor D, Paykel ES, Huppert FA (2000) Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann N Y Acad Sci 903:490–496

    Article  PubMed  CAS  Google Scholar 

  66. Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P et al (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1:693–699

    Article  PubMed  CAS  Google Scholar 

  67. Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398:525–529

    Article  PubMed  CAS  Google Scholar 

  68. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 59:880–888

    PubMed  CAS  Google Scholar 

  69. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease:the ‘two hit’ hypothesis. Mech Ageing Dev 123:39–46

    Article  PubMed  CAS  Google Scholar 

  70. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76:435–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory has been or is supported by the National Institutes of Health, the Alzheimer’s Association, and the John Douglas French Alzheimer’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Smith.

Additional information

Drs. Rudy J. Castellani and Hyoung-gon Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellani, R.J., Lee, HG., Zhu, X. et al. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol 111, 503–509 (2006). https://doi.org/10.1007/s00401-006-0071-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0071-y

Keywords

Navigation