Skip to main content

Advertisement

Log in

Chronic electrostimulation after nerve repair by self-anastomosis: effects on the size, the mechanical, histochemical and biochemical muscle properties

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

This study tests the effects of chronic electrostimulation on denervated/reinnervated skeletal muscle in producing an optimal restoration of size and mechanical and histochemical properties. We compared tibialis anterior muscles in four groups of rats: in unoperated control (C) and 10 weeks following nerve lesion with suture (LS) in the absence of electrostimulation and in the presence of muscle stimulation with either a monophasic rectangular current (LSEm) or a biphasic modulated current (LSEb). The main results were (1) muscle atrophy was reduced in LSEm (−26%) while it was absent in LSEb groups (−8%); (2) the peak twitch amplitude decreased in LS and LSEm but not in LSEb groups, whereas the contraction time was shorter; (3) muscle reinnervation was associated with the emergence of type IIC fibers and proportions of types I, IIA and IIB fibers recovered in the superficial portion of LSEb muscles; (4) the ratio of oxidative to glycolytic activities decreased in the three groups with nerve injury and repair; however, this decrease was more accentuated in LSEm groups. We conclude that muscle electrostimulation following denervation and reinnervation tends to restore size and functional and histochemical properties during reinnervation better than is seen in unstimulated muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A:

Amplitude

C:

Control group (unoperated)

CS:

Citrate synthase

CT:

Contraction time

EIF:

Electrically induced fatigue

IFG-1:

Insulin-like growth factor 1

L:

Nerve lesion

LDH:

Lactate dehydrogenase

LS:

Lesion and suture of the nerve

LSEm :

Lesion and suture of the nerve, plus electrostimulation with a monophasic current

LSEb :

Lesion and suture of the nerve, plus electrostimulation with a biphasic current

MGF:

Muscle growth factor

MRR:

Maximum relaxation rate

References

  1. Anderl H (1977) Cross-face nerve transplantation in fascial palsy. Proc R Soc Med 70:143–144

    PubMed  CAS  Google Scholar 

  2. Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lomo T (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10:153–160

    PubMed  CAS  Google Scholar 

  3. Bain JR, Veltri KL, Chamberlain D, Fahnestock M (2001) Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience 103:503–510

    Article  PubMed  CAS  Google Scholar 

  4. Balice-Gordon RJ, Thompson WJ (1988) The organization and development of compartmentalized innervation in rat extensor digitorum longus muscle. J Physiol 398:211–231

    PubMed  CAS  Google Scholar 

  5. Bar A, Pette D (1988) Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 235(1–2):153–155

    Article  PubMed  CAS  Google Scholar 

  6. Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71:541–585

    PubMed  CAS  Google Scholar 

  7. Boudriau S, Cote CH, Vincent M, Houle P, Tremblay RR, Rogers PA (1996) Remodeling of the cytoskeletal lattice in denervated skeletal muscle. Muscle Nerve 19:1383–1390

    Article  PubMed  CAS  Google Scholar 

  8. Briggs FN, Poland JL, Solaro RJ (1977) Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles. J Physiol 266:587–594

    PubMed  CAS  Google Scholar 

  9. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379

    PubMed  CAS  Google Scholar 

  10. Brown JM, Henriksson J, Salmons S (1989) Restoration of fast muscle characteristics following cessation of chronic stimulation: physiological, histochemical and metabolic changes during slow-to-fast transformation. Proc R Soc Lond B Biol Sci 235:321–346

    PubMed  CAS  Google Scholar 

  11. Carlsen RC, Klein HW, Matthews CC, Gourley IM (1987) Recovery of free muscle grafts in rat: improvement is associated with an increase in cyclic adenosine monophosphate concentration or use of the condition/test paradigm. Exp Neurol 98:616–632

    Article  PubMed  CAS  Google Scholar 

  12. Carlson BM, Faulkner JA (1988) Reinnervation of long-term denervated rat muscle freely grafted into an innervated limb. Exp Neurol 102:50–56

    Article  PubMed  CAS  Google Scholar 

  13. Carlson BM, Hnik P, Tucek S, Vejsada R, Bader DM, Faulkner JA (1981) Comparison between grafts with intact nerves and standard free grafts of the rat extensor digitorum longus muscle. Physiol Bohemoslov 30:505–514

    PubMed  CAS  Google Scholar 

  14. Carlson BM, Billington L, Faulkner J (1996) Studies on the regenerative recovery of long-term denervated muscle in rats. Res Neurol Neurosci 10:77–84

    Google Scholar 

  15. Carraro U, Catani C, Belluco S, Cantini M, Marchioro L (1986) Slow-like electrostimulation switches on slow myosin in denervated fast muscle. Exp Neurol 94:537–553

    Article  PubMed  CAS  Google Scholar 

  16. Carraro U, Catani C, Saggin L, Zrunek M, Szabolcs M, Gruber H, Streinzer W, Mayr W, Thoma H (1988) Isomyosin changes after functional electrostimulation of denervated sheep muscle. Muscle Nerve 11:1016–1028

    Article  PubMed  CAS  Google Scholar 

  17. Chi MM, Hintz CS, Henriksson J, Salmons S, Hellendahl RP, Park JL, Nemeth PM, Lowry OH (1986) Chronic stimulation of mammalian muscle: enzyme changes in individual fibers. Am J Physiol 251:633–642

    Google Scholar 

  18. Close R (1969) Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J Physiol 204:331–346

    PubMed  CAS  Google Scholar 

  19. Csukly K, Marqueste T, Gardiner P (2005) Sensitivity of rat soleus muscle to a mechanical stimulus is decreased following hindlimb unweighting. Eur J Appl Physiol 95(2–3):243–249

    Article  PubMed  Google Scholar 

  20. Curwin S, Stanish WD, Valiant G (1980) Clinical applications and biochemical effects of high frequency electrical stimulation. Can Athl Trainers Assoc J 6:15–16

    Google Scholar 

  21. Decherchi P, Vuillon-Cacciutolo G, Darques JL, Jammes Y (2001) Changes in afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Muscle Nerve 24:59–68

    Article  PubMed  CAS  Google Scholar 

  22. Delp MD, Duan C (1996) Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol 80:261–270

    PubMed  CAS  Google Scholar 

  23. Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63:558–563

    PubMed  CAS  Google Scholar 

  24. Eberstein A, Pachter BR (1986) The effect of electrical stimulation on reinnervation of rat muscle: contractile properties and endplate morphometry. Brain Res 384(2):304–310

    Article  PubMed  CAS  Google Scholar 

  25. Eken T, Gundersen K (1988) Electrical stimulation resembling normal motor-unit activity: effects on denervated fast and slow rat muscles. J Physiol 402:651–669

    PubMed  CAS  Google Scholar 

  26. Eriksson E, Haggmark T (1979) Comparison of isometric muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery. A preliminary report. Am J Sports Med 7:169–171

    Article  PubMed  CAS  Google Scholar 

  27. Esau SA, Bellemare F, Grassino A, Permutt S, Roussos C, Pardy RL (1983) Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol 54:1353–1360

    PubMed  CAS  Google Scholar 

  28. Faucher M, Guillot C, Marqueste T, Kipson N, Mayet-Sornay MH, Desplanches D, Jammes Y, Badier M (2005) Matched adaptations of electrophysiological, physiological, and histological properties of skeletal muscles in response to chronic hypoxia. Pflugers Arch 450:45–52

    Article  PubMed  CAS  Google Scholar 

  29. Gatchalian CL, Schachner M, Sanes JR (1989) Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin(J1), N-CAM, fibronectin, and a heparan sulfate proteoglycan. J Cell Biol 108:873–1890

    Article  Google Scholar 

  30. Gillespie MJ, Gordon T, Murphy PR (1987) Motor units and histochemistry in rat lateral gastrocnemius and soleus muscles: evidence for dissociation of physiological and histochemical properties after reinnervation. J Neurophysiol 57:921–937

    PubMed  CAS  Google Scholar 

  31. Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194:323–334

    Article  PubMed  CAS  Google Scholar 

  32. Goldspink G, Yang SY (2001) Effects of activity on growth factor expression. Int J Sport Nutr Exerc Metab 11:21–27

    Google Scholar 

  33. Gordon T, Mao J (1994) Muscle atrophy and procedures for training after spinal cord injury. Phys Ther 74:50–60

    PubMed  CAS  Google Scholar 

  34. Gorza L, Gundersen K, Lomo T, Schiaffino S, Westgaard RH (1988) Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol 402:627–649

    PubMed  CAS  Google Scholar 

  35. Grandmontagne M, Vaage O, Kopke Vollestad N, Hermansen L (1982) Confrontation de methods histochimiques et d’immunofluorescence pour le typage des fibres du muscle squelettique de rat (Abstract). J Physiol Paris 78:14A

    Google Scholar 

  36. Graziotti GH, Rios CM, Rivero JL (2001) Evidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama). J Histochem Cytochem 49:1033–1044

    PubMed  CAS  Google Scholar 

  37. Green HJ, Klug GA, Reichmann H, Seedorf U, Wiehrer W, Pette D (1984) Exercise-induced fibre type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflugers Arch 400:432–438

    Article  PubMed  CAS  Google Scholar 

  38. Green HJ, Reichmann H, Pette D (1984) Inter- and intraspecies comparisons of fibre type distribution and of succinate dehydrogenase activity in type I, IIA and IIB fibres of mammalian diaphragms. Histochemistry 81:67–73

    Article  PubMed  CAS  Google Scholar 

  39. Gulati AK (1988) Long-term retention of regenerative capability after denervation of skeletal muscle, and dependency of late differentiation on innervation. Anat Rec 220:429–434

    Article  PubMed  CAS  Google Scholar 

  40. Gundersen K (1998) Determination of muscle contractile properties: the importance of the nerve. Acta Physiol Scand 162:333–341

    Article  PubMed  CAS  Google Scholar 

  41. Gundersen K, Leberer E, Lomo T, Pette D, Staron RS (1988) Fibre types, calcium-sequestering proteins and metabolic enzymes in denervated and chronically stimulated muscles of the rat. J Physiol 398:177–189

    PubMed  CAS  Google Scholar 

  42. Guth L, Samaha FJ (1969) Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol 25:138–152

    Article  PubMed  CAS  Google Scholar 

  43. Gutmann E (ed) (1962) The denervated muscle. Czechoslovak Academy of Sciences, Praha

  44. Gutmann E (1973) Basic mechanisms and effects of muscular activity and inactivity. Fysiatr Revmatol Vestn 51:125–127

    PubMed  CAS  Google Scholar 

  45. Hamalainen N, Pette D (1996) Slow-to-fast transitions in myosin expression of rat soleus muscle by phasic high-frequency stimulation. FEBS Lett 399:220–222

    Article  PubMed  CAS  Google Scholar 

  46. Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  PubMed  CAS  Google Scholar 

  47. Hennig R, Lomo T (1987) Effects of chronic stimulation on the size and speed of long-term denervated and innervated rat fast and slow skeletal muscles. Acta Physiol Scand 130:115–131

    PubMed  CAS  Google Scholar 

  48. Henriksson J, Chi MM, Hintz CS, Young DA, Kaiser KK, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:614–632

    Google Scholar 

  49. Hintz CS, Coyle EF, Kaiser KK, Chi MM, Lowry OH (1984) Comparison of muscle fiber typing by quantitative enzyme assays and by myosin ATPase staining. J Histochem Cytochem 32:655–660

    PubMed  CAS  Google Scholar 

  50. Jakubiec-Puka A, Kordowska J, Catani C, Carraro U (1990) Myosin heavy chain isoform composition in striated muscle after denervation and self-reinnervation. Eur J Biochem 193:623–628

    Article  PubMed  CAS  Google Scholar 

  51. Jakubiec-Puka A, Ciechomska I, Morga J, Matusiak A (1999) Contents of myosin heavy chains in denervated slow and fast rat leg muscles. Comp Biochem Physiol B Biochem Mol Biol 122:355–362

    Article  PubMed  CAS  Google Scholar 

  52. Jammes Y, Collett P, Lenoir P, Lama A, Berthelin F, Roussos C (1991) Diaphragmatic fatigue produced by constant or modulated electric currents. Muscle Nerve 14:27–34

    Article  PubMed  CAS  Google Scholar 

  53. Jarvis JC, Sutherland H, Mayne CN, Gilroy SJ, Salmons S (1996) Induction of a fast-oxidative phenotype by chronic muscle stimulation: mechanical and biochemical studies. Am J Physiol 270:306–312

    Google Scholar 

  54. Kanaya F, Tajima T (1992) Effect of electrostimulation on denervated muscle. Clin Orthop Relat Res Oct:296–301

  55. Kern H, Boncompagni S, Rossini K, Mayr W, Fano G, Zanin ME, Podhorska-Okolow M, Protasi F, Carraro U (2004) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? Neuropathol Exp Neurol 63(9):919–931

    Google Scholar 

  56. Klein HW, Carlsen RC, Gourley I (1988) Pharmacologic enhancement of functional recovery in free muscle transfers. J Reconstr Microsurg 4:277–281, 283–284

    Google Scholar 

  57. Kostyukov AI, Hellstrom F, Korchak OE, Radovanovic S, Ljubisavljevic M, Windhorst U, Johansson H (2000) Fatigue effects in the cat gastrocnemius during frequency-modulated efferent stimulation. Neuroscience 97:789–799

    Article  PubMed  CAS  Google Scholar 

  58. LaFramboise WA, Daood MJ, Guthrie RD, Moretti P, Schiaffino S, Ontell M (1990) Electrophoretic separation and immunological identification of type 2X myosin heavy chain in rat skeletal muscle. Biochim Biophys Acta 1035:109–112

    PubMed  CAS  Google Scholar 

  59. Lopez-Guajardo A, Sutherland H, Jarvis JC, Salmons S (2000) Dynamics of stimulation-induced muscle adaptation: insights from varying the duty cycle. J Muscle Res Cell Motil 21:725–735

    Article  PubMed  CAS  Google Scholar 

  60. Lopez-Guajardo A, Sutherland H, Jarvis JC, Salmons S (2001) Induction of a fatigue-resistant phenotype in rabbit fast muscle by small daily amounts of stimulation. J Appl Physiol 90:1909–1918

    PubMed  CAS  Google Scholar 

  61. Love FM, Son YJ, Thompson WJ (2003) Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54(4):566–576

    Article  PubMed  Google Scholar 

  62. Lowry OH, Passonneau JV (ed) (1972) A flexible system of enzymatic analysis. Academic Press, New York

  63. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  64. Marqueste T, Decherchi P, Dousset E, Berthelin F, Jammes Y (2002) Effect of muscle electrostimulation on afferent activities from tibialis anterior muscle after nerve repair by self-anastomosis. Neuroscience 113:257–271

    Article  PubMed  CAS  Google Scholar 

  65. Marqueste T, Hug F, Decherchi P, Jammes Y (2003) Changes in neuromuscular function after training by functional electrical stimulation. Muscle Nerve 28(2):181–188

    Article  PubMed  Google Scholar 

  66. Marqueste T, Alliez JR, Alluin O, Jammes Y, Decherchi P (2004) Neuromuscular rehabilitation by treadmill running or electrical stimulation after peripheral nerve injury and repair. J Appl Physiol 96:1988–1995

    Article  PubMed  Google Scholar 

  67. Mayne CN, Sutherland H, Jarvis JC, Gilroy SJ, Craven AJ, Salmons S (1996) Induction of a fast-oxidative phenotype by chronic muscle stimulation: histochemical and metabolic studies. Am J Physiol 270:313–320

    Google Scholar 

  68. McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (2002) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516:583–592

    Article  Google Scholar 

  69. Mira JC, Janmot C, Couteaux R, d’Albis A (1992) Reinnervation of denervated extensor digitorum longus of the rat by the nerve of the soleus does not induce the type I myosin synthesis directly but through a sequential transition of type II myosin isoforms. Neurosci Lett 141:223–226

    Article  PubMed  CAS  Google Scholar 

  70. Pachter BR, Eberstein A (1983) Endplate postsynaptic structure dependent upon muscle activity. Neurosci Lett 43(2–3):277–283

    Article  PubMed  CAS  Google Scholar 

  71. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500–509

    Article  PubMed  CAS  Google Scholar 

  72. Pette D, Vrbova G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    PubMed  CAS  Google Scholar 

  73. Pette D, Muller W, Leisner E, Vrbova G (1976) Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pflugers Arch 364:103–112

    Article  PubMed  CAS  Google Scholar 

  74. Pierobon-Bormioli S, Sartore S, Libera LD, Vitadello M, Schiaffino S (1987) “Fast” isomyosins and fiber types in mammalian skeletal muscle. J Histochem Cytochem 29:1179–1188

    Google Scholar 

  75. Reichmann H, Nix WA (1985) Changes of energy metabolism, myosin light chain composition, lactate dehydrogenase isozyme pattern and fibre type distribution of denervated fast-twitch muscle from rabbit after low frequency stimulation. Pflugers Arch 405:244–249

    Article  PubMed  CAS  Google Scholar 

  76. Reichmann H, Srihari T, Pette D (1983) Ipsi- and contralateral fibre transformations by cross-reinnervation. A principle of symmetry. Pflugers Arch 397:202–208

    Article  PubMed  CAS  Google Scholar 

  77. Rosser BW, Norris BJ, Nemeth PM (1992) Metabolic capacity of individual muscle fibers from different anatomic locations. J Histochem Cytochem 40:819–825

    PubMed  CAS  Google Scholar 

  78. Sakakima H, Yoshida Y (2003) Effects of short duration static stretching on the denervated and reinnervated soleus muscle morphology in the rat. Arch Phys Med Rehabil 84(9):1339–1342

    Article  PubMed  Google Scholar 

  79. Salmons S, Sreter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    Article  PubMed  CAS  Google Scholar 

  80. Salmons S, Ashley Z, Sutherland H, Russold MF, Li F, Jarvis JC (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Organs 29(3):199–202

    Article  PubMed  Google Scholar 

  81. Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10:197–205

    Article  PubMed  CAS  Google Scholar 

  82. Siironen J, Sandberg M, Vuorinen V, Roytta M (1992) Expression of type I and III collagens and fibronectin after transection of rat sciatic nerve. Reinnervation compared with denervation. Lab Invest 67:80–87

    PubMed  CAS  Google Scholar 

  83. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–5

    Article  CAS  Google Scholar 

  84. Staron RS, Kraemer WJ, Hikida RS, Fry AC, Murray JD, Campos GE (1999) Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem Cell Biol 111:117–123

    Article  PubMed  CAS  Google Scholar 

  85. Sunderland S (1978) Nerve and nerve injuries, 2nd edn. Churchill-Livingston, Edinburgh

    Google Scholar 

  86. Terzis J, Faibisoff B, Williams B (1975) The nerve gap: suture under tension vs. graft. Plast Reconstr Surg 56:166–170

    Article  PubMed  CAS  Google Scholar 

  87. Thomas CK, Nelson G, Than L, Zijdewind I (2002) Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle Nerve 25:797–804

    Article  PubMed  Google Scholar 

  88. Totosy de Zepetnek JE, Zung HV, Erdebil S, Gordon T (1992) Motor-unit categorization based on contractile and histochemical properties: a glycogen depletion analysis of normal and reinnervated rat tibialis anterior muscle. J Neurophysiol 67:1404–1415

    Google Scholar 

  89. Ullman M, Alameddine H, Skottner A, Oldfors A (1989) Effects of growth hormone on skeletal muscle. II. Studies on regeneration and denervation in adult rats. Acta Physiol Scand 135:537–543

    PubMed  CAS  Google Scholar 

  90. Virtanen P, Tolonen U, Savolainen J, Takala TE (1992) Effect of reinnervation on collagen synthesis in rat skeletal muscle. J Appl Physiol 72:2069–2074

    Article  PubMed  CAS  Google Scholar 

  91. Vuillon-Cacciuttolo G, Berthelin F, Jammes Y (1997) Dissociated changes in fatigue resistance and characteristics of M waves and twitches in a fast muscle group after two weeks of chronic stimulation: influence of the stimulation patterns. Muscle Nerve 20:604–607

    Article  PubMed  CAS  Google Scholar 

  92. Wang LC, Kernell D (2002) Recovery of type I fiber regionalization in gastrocnemius medialis of the rat after reinnervation along original and foreign paths, with and without muscle rotation. Neuroscience 114:629–640

    Article  PubMed  CAS  Google Scholar 

  93. Wang L, Copray S, Brouwer N, Meek MF, Kernell D (2002) Regional distribution of slow-twitch muscle fibers after reinnervation in adult rat hindlimb muscles. Muscle Nerve 25:805–815

    Article  PubMed  Google Scholar 

  94. Westgaard RH, Lomo T (1988) Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat. J Neurosci 8:4415–4426

    PubMed  CAS  Google Scholar 

  95. White TP, Devor S (1993) Skeletal muscle regeneration and plasticity of grafts. In: Holloszy J (ed) Exercise and sport sciences reviews, vol 21, pp 263–295

  96. Windisch A, Gundersen K, Szabolcs MJ, Gruber H, Lomo T (1998) Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol 510:623–632

    Article  PubMed  CAS  Google Scholar 

  97. Yang S, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ALARME (Association Libre d’Aide à Recherche sur la Moelle Epinière) and DGA-DSP (no. 00.34.029.00.470.75.01). We are grateful to Marie-Hélène Mayet-Sornay, Nathalie Kipson, Francis Berthelin (Physitech® Electronique Médicale), Ferdinand Tagliarini (Faculté de Médecine Nord, Marseille), Duane Button and Andréa Stefanyshen (University of Manitoba, Winnipeg) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Decherchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marqueste, T., Decherchi, P., Desplanches, D. et al. Chronic electrostimulation after nerve repair by self-anastomosis: effects on the size, the mechanical, histochemical and biochemical muscle properties. Acta Neuropathol 111, 589–600 (2006). https://doi.org/10.1007/s00401-006-0035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0035-2

Keywords

Navigation