Skip to main content
Log in

GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The gamma amino butyric acid (GABA) transporters GAT-1 and GAT-3 were localized by immunohistochemistry in hippocampi removed for the control of medically intractable temporal lobe epilepsy (TLE). The study aimed to determine the relationship of GABA transporter expression to known patterns of hippocampal hyperexcitability and extracellular GABA levels. GAT-1 was localized in axon terminals and small neuronal cell bodies, and in non-sclerotic hippocampi was strongly expressed throughout all regions of the hippocampal formation. In the epileptogenic hippocampus exhibiting Ammon’s horn sclerosis, immunoreactivity was reduced in the sclerotic regions CA3 and CA1, and around the cell bodies of dentate granule cells, but was increased along granule cell dendrites. GAT-3 was weakly expressed, if at all, in non-sclerotic hippocampi, but more prominently expressed in sclerotic hippocampi. GAT-3 expression was confined to cells resembling protoplasmic astrocytes, which were located in regions of relative neuronal sparing such as the dentate gyrus and hilus of the sclerotic hippocampus. The reduction in GAT-1 around granule cells in the sclerotic hippocampus could explain the prolonged GABA responses in this region. The loss of GAT-1 (a marker of GABAergic terminals) would also suggest a reduced GABAergic input to the granule cells, thus facilitating hyperexcitability. The increased GAT-3 expression in astrocytes in regions of relative neuronal sparing in the sclerotic hippocampus may be related to the overall low levels of extracellular GABA observed in the sclerotic hippocampus and their increased excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arellano JI, Muñoz A, Ballesteros-Yáñez I, Sola RG, DeFilipe J (2003) Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127:45–64

    Article  PubMed  Google Scholar 

  2. Babb TL, Pretorius JK, Crandall PH (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9:2562–2574

    PubMed  CAS  Google Scholar 

  3. Barnard C, Costar R, Hirsch JC, Escapes M, Ben-Ari Y (2000) What is GABAergic inhibition? How is it modified in epilepsy? Epilepsia 41:S90–S95

    Google Scholar 

  4. Borden LA (1996) GABA transporter heterogeniety: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  5. Brines ML, Sundaresan S, Spencer DD, de Lanerolle NC (1997) Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: upregulation in reorganized epileptogenic hippocampus. Eur J Neurosci 9:2035–2044

    Article  PubMed  CAS  Google Scholar 

  6. Cammack JN, Rakhilin SV, Schwartz EA (1994) A GABA transporter operates asymmetrically with variable stoichiometry. Neuron 13:949–960

    Article  PubMed  CAS  Google Scholar 

  7. Cammack JN, Schwartz EA (1993) Ions required for the electrogenic transport of GABA by horizontal cells of the catfish retina. J Physiol (Lond) 472:81–102

    CAS  Google Scholar 

  8. Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Rev 45:196–212

    Article  PubMed  CAS  Google Scholar 

  9. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  10. Danbolt NC, Lehre KP, Dehnes Y, Chaudhry FA, Levy LM (1998) Localization of transporters using transporter-specific antibodies. Methods Enzymol 296:388–407

    PubMed  CAS  Google Scholar 

  11. Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740

    Article  PubMed  CAS  Google Scholar 

  12. de Lanerolle NC, Eid T, von Campe G, Kovacs I, Spencer DD, Brines M (1998) Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus. Eur J Neurosci 10:1687–1703

    Article  PubMed  Google Scholar 

  13. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 495:387–395

    Article  PubMed  Google Scholar 

  14. de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687

    Article  PubMed  Google Scholar 

  15. de Lanerolle NC, Williamson A, Meredith C, Kim JH, Tabuteau H, Spencer DD, Brines ML (1997) Dynorphin and the kappa 1 ligand [3H]-U69,539 binding in the human epileptogenic hippocampus. Epilepsy Res 28:189–205

    Article  PubMed  Google Scholar 

  16. DeFelipe J, Gonzalez-Albo MDC (1998) Chandelier cell axons are immunoreactive for GAT1 in the human neocortex. NeuroReport 9:467–470

    Article  PubMed  CAS  Google Scholar 

  17. During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    Article  PubMed  CAS  Google Scholar 

  18. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  19. Durkin MM, Smith KE, A BL, Weinshank RL, Branchek TA, Giustaffson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Mol Brain Res 33:7–21

    Google Scholar 

  20. Fried I, Kim JH, Spencer DD (1992) Hippocampal pathology in patients with intractable seizures and temporal lobe masses. J Neurosurg 76:735–740

    Article  PubMed  CAS  Google Scholar 

  21. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10:267–282

    PubMed  CAS  Google Scholar 

  22. Ikegaki N, Saitoh N, Hashima M, Tanaka C (1994) Production of specific antibodies against GABA transporter subtypes (GAT1, GAT2, GAT3) and their application to immunocytochemistry. Mol Brain Res 26:47–54

    Article  PubMed  CAS  Google Scholar 

  23. Isokawa M, Avanzini G, Finch DM, Babb TL, Levesque MF (1991) Physiological properties of human dentate granule cells in slices prepared from epileptic patients. Epilepsy Res 9:242–250

    Article  PubMed  CAS  Google Scholar 

  24. Johnson EW, de Lanerolle NC, Kim JH, Sundaresan S, Spencer DD, Mattson RH, Zoghbi SS, Baldwin RM, Hoffer PB, Seibyl JP, Innis RB (1992) Central and peripheral benzodiazepine receptors: opposite changes in human epileptic tissue. Neurology 42:811–815

    PubMed  CAS  Google Scholar 

  25. Jursky F, Tamura S, Tamura A, Mandiyan S, Nelson H, Nelson N (1994) Structure, function and brain localization of neurotransmitter transporters. J Exp Biol 196:283–295

    PubMed  CAS  Google Scholar 

  26. Kaila R, Rydqvist B, Pasternack M, Voipio J (1992) Inward current caused by sodium dependent uptake of GABA in the crayfish stretch receptor neuron. J Physiol (Lond) 453:627–645

    CAS  Google Scholar 

  27. Kim JH, Guimaraes PO, Shen M-Y, Masukawa LM, Spencer DD (1990) Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas. Acta Neuropathol 80:41–45

    Article  PubMed  CAS  Google Scholar 

  28. Knowles WD, Awad IA, Nayel MH (1992) Differences in in vitro electrophysiology of hippocampal neurons from epileptic patients with mesiotemporal sclerosis versus structural lesions. Epilepsia 33:601–609

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd KG, Bossi L, Morselli PL (1985) Biochemical evidence for dysfunction of GABA neurons in human epilepsy. In: Bartholini G, Bossi L, Lloyd KG (eds) Epilepsy and GABA receptor agonists: basic and therapeutic research, Raven Press, New York, pp 43–51

    Google Scholar 

  30. Masukawa L, Higashima M, Kim J, Spencer DD (1989) Epileptiform discharges evoked in hippocampal brain slices from epileptic patients. Brain Res 493:168–174

    Article  PubMed  CAS  Google Scholar 

  31. Mathern GW, Babb TL, Armstrong DL (1997) Hippocampal sclerosis. In: Engel J, Pedley TA (eds) Epilepsy: a comprehensive textbook, Lippincott-Raven, Philadelphia, pp 133–155

    Google Scholar 

  32. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    PubMed  CAS  Google Scholar 

  33. Patrylo PR, Spencer DD, Williamson A (2001) GABA uptake and heterotransport are impaired in the dentate gyrus of epileptic rats and humans with temporal lobe sclerosis. J Neurophysiol 85:1533–1542

    PubMed  CAS  Google Scholar 

  34. Radian R, Ottersen OP, Storm-mathisen J, Castel M, Kanner BI (1990) Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 10:1319–1330

    PubMed  CAS  Google Scholar 

  35. Sayin U, Osting S, Hagen J, Rutecki P, Sutula TP (2003) Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci 23:2759–2768

    PubMed  CAS  Google Scholar 

  36. Spencer DD (1994) Classifying the epilepsies by substrate. Clin Neurosci 2:104–109

    Google Scholar 

  37. Spencer DD, Inserni J (1991) Temporal lobectomy. In: Lüders HO (ed) Epilepsy surgery, Raven Press Ltd., New York, pp 533–545

    Google Scholar 

  38. Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly R (1984) Access to posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671

    Article  PubMed  CAS  Google Scholar 

  39. Williamson A (1994) Electrophysiology of epileptic human neocortical and hippocampal neurons maintained in vitro. Clin Neurosci 2:47–52

    Google Scholar 

  40. Williamson A, Spencer SS, Spencer DD (1995) Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy. Ann Neurol 38:778–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Ilona Kovacs for her excellent technical assistance with the immunohistochemistry. We are indebted to Professor N.C. Danbolt for providing us with GAT1 antibodies. Some of the data reported here was part of the Senior Thesis of Carlos Paz at Yale College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal C. de Lanerolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TS., Bjørnsen, L.P., Paz, C. et al. GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol 111, 351–363 (2006). https://doi.org/10.1007/s00401-005-0017-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-0017-9

Keywords

Navigation