Skip to main content

Advertisement

Log in

Cortical ubiquitin-positive inclusions in frontotemporal dementia without motor neuron disease: a quantitative immunocytochemical study

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Ubiquitin-positive tau-negative inclusions were initially described in the rare form of frontotemporal dementia (FTD) associated with motor neuron disease. However, recent studies have indicated that these inclusions are also present in typical FTD, which is usually characterized by nonspecific histological changes. To examine the contribution of these inclusions to neuronal loss and to explore their relationship with disease duration, we performed a quantitative immunocytochemical analysis of 38 typical FTD cases. Relationships between neuron and ubiquitin inclusion densities as well as between duration of illness and neuropathological parameters was studied using linear regression in both univariate and multivariate models. Ubiquitin-positive tau-negative intracytoplasmic inclusions were present in 65.8% of cases in the dentate gyrus, 57.9% in temporal cortex and 31.6% in frontal cortex. The highest densities of ubiquitin-positive inclusions were consistently observed in the dentate gyrus, followed by the temporal and frontal cortex. There was no statistically significant relationship between neuron and ubiquitin-positive inclusion densities in any of the areas studied. In contrast, ubiquitin-positive inclusion densities in the dentate gyrus were negatively related to the duration of illness. Our data suggest that the development of ubiquitin-related pathology is the rule and not the exception in typical FTD, yet is not causally related to neuronal loss. They also reveal that the development of ubiquitin-positive inclusion densities in the dentate gyrus may be associated with a more aggressive form of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21:516–520

    CAS  PubMed  Google Scholar 

  2. Bergmann M, Kuchelmeister K, Schmid KW, Kretzschmar HA, Schroder R (1996) Different variants of frontotemporal dementia: a neuropathological and immunohistochemical study. Acta Neuropathol 92:170–179

    Article  CAS  PubMed  Google Scholar 

  3. Bigio EH, Lipton AM, White CL 3rd, Dickson DW, Hirano A (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 29:239–253

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  5. Brun A, Englund B, Gustafson L, Passant U, Mann D, Neary D, Snowden JS (1994) Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 57:416–418

    PubMed  Google Scholar 

  6. Cairns NJ, Brannstrom T, Khan MN, Rossor MN, Lantos PL (2003) Neuronal loss in familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Exp Neurol 181:319–326

    Article  CAS  PubMed  Google Scholar 

  7. Deymeer F, Smith TW, DeGirolami U, Drachman DA (1989) Thalamic dementia and motor neuron disease. Neurology 39:58–61

    CAS  PubMed  Google Scholar 

  8. Dickson DW (2001) Neuropathology of Pick’s disease. Neurology 56: S16–20

    PubMed  Google Scholar 

  9. Ferrer I, Roig C, Espino A, Peiro G, Matias Guiu X (1991) Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex. J Neurol Neurosurg Psychiatry 54:932–934

    CAS  PubMed  Google Scholar 

  10. Fischer DF, De Vos RA, Van Dijk R, De Vrij FM, Proper EA, Sonnemans MA, Verhage MC, Sluijs JA, Hobo B, Zouambia M, Steur EN, Kamphorst W, Hol EM, Van Leeuwen FW (2003) Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J 17:2014–2024

    Article  CAS  PubMed  Google Scholar 

  11. Forno LS, Langston JW, Herrick MK, Wilson JD, Murayama S (2002) Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type. Acta Neuropathol 103:599–606

    Article  CAS  PubMed  Google Scholar 

  12. Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    PubMed  Google Scholar 

  13. Hope AD, Silva R de, Fischer DF, Hol EM, Leeuwen FW van, Lees AJ (2003) Alzheimer’s associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem 86:394–404

    Article  CAS  PubMed  Google Scholar 

  14. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    CAS  PubMed  Google Scholar 

  15. Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002) Morphometrical reappraisal of motor neuron system of Pick’s disease and amyotrophic lateral sclerosis with dementia. Acta Neuropathol 104:21–28

    Article  PubMed  Google Scholar 

  16. Ikemoto A, Hirano A, Akiguchi I, Kimura J (1997) Comparative study of ubiquitin immunoreactivity of hippocampal granular cells in amyotrophic lateral sclerosis with dementia, Guamanian amyotrophic lateral sclerosis and Guamanian parkinsonism-dementia complex. Acta Neuropathol 93:265–570

    Article  CAS  PubMed  Google Scholar 

  17. Iseki E, Li F, Odawara T, Hino H, Suzuki K, Kosaka K, Akiyama H, Ikeda K, Kato M (1998) Ubiquitin-immunohistochemical investigation of atypical Pick’s disease without Pick bodies. J Neurol Sci 159:194–201

    PubMed  Google Scholar 

  18. Jackson M, Lennox G, Lowe J (1996) Motor neurone disease-inclusion dementia. Neurodegeneration 5:339–350

    Article  CAS  PubMed  Google Scholar 

  19. Kawashima T, Doh-ura K, Kikuchi H, Iwaki T (2001) Cognitive dysfunction in patients with amyotrophic lateral sclerosis is associated with spherical or crescent-shaped ubiquitinated intraneuronal inclusions in the parahippocampal gyrus and amygdala, but not in the neostriatum. Acta Neuropathol 102:467–472

    CAS  PubMed  Google Scholar 

  20. Kertesz A, Kawarai T, Rogaeva E, St George-Hyslop P, Poorkaj P, Bird TD, Munoz DG (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54:818–827

    CAS  PubMed  Google Scholar 

  21. Kinoshita A, Tomimoto H, Tachibana N, Suenaga T, Kawamata T, Kimura T, Akiguchi I, Kimura J (1996) A case of primary progressive aphasia with abnormally ubiquitinated neurites in the cerebral cortex. Acta Neuropathol 92:520–524

    Article  CAS  PubMed  Google Scholar 

  22. Kinoshita A, Tomimoto H, Suenaga T, Akiguchi I, Kimura J (1997) Ubiquitin-related cytoskeletal abnormality in frontotemporal dementia: immunohistochemical and immunoelectron microscope studies. Acta Neuropathol 94:67–72

    Article  CAS  PubMed  Google Scholar 

  23. Konagaya M, Sakai M, Matsuoka Y, Konagaya Y, Hashizume Y (1998) Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy. Acta Neuropathol 96:532–536

    Article  CAS  PubMed  Google Scholar 

  24. Kövari E, Leuba G, Savioz A, Saini K, Anastasiu R, Miklossy J, Bouras C (2000) Familial frontotemporal dementia with ubiquitin inclusion bodies and without motor neuron disease. Acta Neuropathol 100:421–426

    PubMed  Google Scholar 

  25. Kövari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, Giannakopoulos P (2003) Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson’s disease. Acta Neuropathol 106:83–88

    PubMed  Google Scholar 

  26. Lang-Rollin I, Rideout H, Stefanis L (2003) Ubiquitinated inclusions and neuronal cell death. Histol Histopathol 18:509–517

    CAS  PubMed  Google Scholar 

  27. Mackenzie IR, Feldman H (2004) Extrapyramidal features in patients with motor neuron disease and dementia; a clinicopathological correlative study. Acta Neuropathol 107:336–340

    Article  PubMed  Google Scholar 

  28. Mann DM, South PW, Snowden JS, Neary D (1993) Dementia of frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry 56:605–614

    CAS  PubMed  Google Scholar 

  29. Martin JA, Craft DK, Su JH, Kim RC, Cotman CW (2001) Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol Aging 22:195–207

    Article  CAS  PubMed  Google Scholar 

  30. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809

    CAS  PubMed  Google Scholar 

  31. Mochizuki A, Komatsuzaki Y, Iwamoto H, Shoji S (2004) Frontotemporal dementia with ubiquitinated neuronal inclusions presenting with primary lateral sclerosis and parkinsonism: clinicopathological report of an autopsy case. Acta Neuropathol 107:337–380

    Article  Google Scholar 

  32. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    CAS  PubMed  Google Scholar 

  33. Nichol KE, Kim R, Cotman CW (2001) Bcl-2 family protein behavior in frontotemporal dementia implies vascular involvement. Neurology 56:S35–40

    Article  CAS  Google Scholar 

  34. Odawara T, Iseki E, Kanai A, Arai T, Katsuragi T, Hino H, Furukawa Y, Kato M, Yamamoto T, Kosaka K (2003) Clinicopathological study of two subtypes of Pick’s disease in Japan. Dement Geriatr Cogn Disord 15:19–25

    Article  PubMed  Google Scholar 

  35. Rosso SM, Kamphorst W, Graaf B de, Willemsen R, Ravid R, Niermeijer MF, Spillantini MG, Heutink P, Swieten JC van (2001) Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain 124:1948–1957

    CAS  PubMed  Google Scholar 

  36. Rosso SM, Donker Kaat L, Baks T, Joosse M, Koning I de, Pijnenburg Y, Jong D de, Dooijes D, Kamphorst W, Ravid R, Niermeijer MF, Verheij F, Kremer HP, Scheltens P, Duijn CM van, Heutink P, Swieten JC van (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022

    Article  PubMed  Google Scholar 

  37. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  Google Scholar 

  38. Su JH, Nichol KE, Sitch T, Sheu P, Chubb C, Miller BL, Tomaselli KJ, Kim RC, Cotman CW (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp Neurol 163:9–19

    Article  CAS  PubMed  Google Scholar 

  39. Talbot PR (1996) Frontal lobe dementia and motor neuron disease. J Neural Transm Suppl 47:125–132

    CAS  PubMed  Google Scholar 

  40. Tolnay M, Probst A (1995) Frontal lobe degeneration: novel ubiquitin-immunoreactive neurites within frontotemporal cortex. Neuropathol Appl Neurobiol 21:492–497

    CAS  PubMed  Google Scholar 

  41. Tolnay M, Probst A (2001) Frontotemporal lobar degeneration. An update on clinical, pathological and genetic findings. Gerontology 47:1–8

    Article  CAS  Google Scholar 

  42. Toyoshima Y, Piao YS, Tan CF, Morita M, Tanaka M, Oyanagi K, Okamoto K, Takahashi H (2003) Pathological involvement of the motor neuron system and hippocampal formation in motor neuron disease-inclusion dementia. Acta Neuropathol 106:50–56

    PubMed  Google Scholar 

  43. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    CAS  PubMed  Google Scholar 

  44. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    CAS  PubMed  Google Scholar 

  45. Wightman G, Anderson VE, Martin J, Swash M, Anderton BH, Neary D, Mann D, Luthert P, Leigh PN (1992) Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett 139:269–274

    CAS  PubMed  Google Scholar 

  46. Woulfe J, Kertesz A, Munoz DG (2001) Frontotemporal dementia with ubiquitinated cytoplasmic and intranuclear inclusions. Acta Neuropathol 102:94–102

    CAS  PubMed  Google Scholar 

  47. Yaguchi M, Okamoto K, Nakazato Y (2003) Frontotemporal dementia with cerebral intraneuronal ubiquitin-positive inclusions but lacking lower motor neuron involvement. Acta Neuropathol 105:81–85

    PubMed  Google Scholar 

  48. Yang Y, Schmitt HP (2001) Frontotemporal dementia: evidence for impairment of ascending serotoninergic but not noradrenergic innervation. Immunocytochemical and quantitative study using a graph method. Acta Neuropathol 101:256–270

    CAS  PubMed  Google Scholar 

  49. Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, Bruce J, Shuck T, Grossman M, Clark CM, Arnold SE, Masliah E, Galasko D, Trojanowski JQ, Lee VM (2001) Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 49:165–175

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. P. Lovero and M. Surini-Demiri for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Bouras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kövari, E., Gold, G., Giannakopoulos, P. et al. Cortical ubiquitin-positive inclusions in frontotemporal dementia without motor neuron disease: a quantitative immunocytochemical study. Acta Neuropathol 108, 207–212 (2004). https://doi.org/10.1007/s00401-004-0881-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0881-8

Keywords

Navigation