Skip to main content
Log in

Biphasic NF-κB activation in the excitotoxic hippocampus

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Excitotoxic stimulation of NMDA receptors results in the activation of a variety of cellular responses. The inducible transcription factor NF-κB is known to be involved in excitotoxic responses by neurons. Here, we show that NF-κB activation occurs in a biphasic manner in hippocampal slices following a 20-min N-methyl-d-aspartate (NMDA) exposure. The biphasic activation profile consists of an early, rapid phase at 0.5–1 h post-insult, and a delayed phase evident 10–24 h post-insult. Endogenous inhibitors of NF-κB, IκBs, were examined for their involvement in the biphasic activation. IκBβ exhibited marked degradation in response to the excitotoxity, while changes in the levels of IκBα and p105 isoforms were not detected. The initial decline in IκBβ occurred in as little as 30 min post-NMDA exposure, coinciding with early NF-κB activity. A second, more gradual phase of IκBβ degradation was also evident, possibly giving rise to the delayed activation of the transcription factor. While both phases of NF-κB activation were disrupted by the NMDA receptor antagonist AP5, they were distinct with regard to the composition of activated complexes and their responsiveness to altered culture conditions. The two phases of NF-κB activity also were associated with distinct gene regulation events. Up-regulation of bcl-2 message occurred early after the excitotoxic insult and remained up-regulated for an extended period. In contrast, bax message initially remained unchanged after the insult, but then exhibited an increase 24 h later, corresponding with the second phase of the NF-κB response. These results indicate that distinct phases of NF-κB activation are generated in the excitotoxic hippocampus, and that the phases may be involved in opposing cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G, Mocchetti I (2001) Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 21:3104–3112

    PubMed  Google Scholar 

  2. Baeuerle PA (1991) The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochim Biophys Acta 1072:63–80

    CAS  PubMed  Google Scholar 

  3. Baeuerle PA, Baltimore D (1996) NF-κB: Ten years after. Cell 87:13–20

    CAS  PubMed  Google Scholar 

  4. Bahr BA (1995) Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J Neurosci Res 42:294–305

    PubMed  Google Scholar 

  5. Bahr BA, Arai B, Gall CM, Vanderklish PW, Hoffman KB, Lynch G (1994) Induction of β-amyloid-containing polypeptides in hippocampus: evidence for a concomitant loss of synaptic proteins and interactions with an excitotoxin. Exp Neurol 129:81–94

    Article  PubMed  Google Scholar 

  6. Bahr BA, Kessler M, Rivera S, Vanderklish PW, Hall RA, Mutneja MS, Gall C, Hoffman KB (1995) Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus 5:425–439

    PubMed  Google Scholar 

  7. Bahr BA, Bendiske J, Brown QB, Munirathinam S, Caba E, Rudin M, Urwyler S, Sauter A, Rogers G (2002) Survival signaling and selective neuroprotection through glutamatergic transmission. Exp Neurol 174:37–47

    Article  PubMed  Google Scholar 

  8. Baldwin AS Jr (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  PubMed  Google Scholar 

  9. Barger SW, Mattson MP (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s β-amyloid precursor. Mol Brain Res 40:116–126

    PubMed  Google Scholar 

  10. Caba E, Brown QB, Kawasaki B, Bahr BA (2002) Peptidyl α-keto amide inhibitor of calpain blocks excitotoxic damage without affecting signal transduction events. J Neurosci Res 67:787–794

    Article  PubMed  Google Scholar 

  11. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE, Rash KS, Little SP (1997) Global cerebral ischemia activates nuclear factor-κB prior to evidence of DNA fragmentation. Mol Brain Res 48:187–196

    Article  PubMed  Google Scholar 

  12. Cuervo AM, Hu W, Lim B, Dice JF (1998) IκB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 9:1995–2010

    CAS  PubMed  Google Scholar 

  13. Djebaili M, Rondouin G, Baille V, Bockaert J (2000) p53 and bax implication in NMDA induced-apoptosis in mouse hippocampus. Neuroreport 11:2973–2976

    PubMed  Google Scholar 

  14. Furukawa K, Mattson MP (1998) The transcription factor NF-κB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70:1876–1886

    PubMed  Google Scholar 

  15. Goodman Y, Mattson MP (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity. J Neurochem 66:869–872

    PubMed  Google Scholar 

  16. Grilli M, Memo M (1999) Nuclear factor-κB/Rel proteins: a point of convergence of signaling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol 57:1–7

    CAS  PubMed  Google Scholar 

  17. Grilli M, Pizzi M, Memo M, Spano P (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274:1383–1385

    CAS  PubMed  Google Scholar 

  18. Guerrini L, Blasi F, Denis-Donini S (1995) Synaptic activation of NF-κB by glutamate in cerebellar granule neurons in vitro. Proc Natl Acad Sci USA 92:9077–9081

    CAS  PubMed  Google Scholar 

  19. Guerrini L, Molteni A, Wirth T, Kistler B, Blasi F (1997) Glutamate-dependent activation of NF-κB during mouse cerebellum development. J Neurosci 17:6057–6063

    CAS  PubMed  Google Scholar 

  20. Han Y, Brasier AR (1997) Mechanism for biphasic relA NF-κB1 nuclear translocation in tumor necrosis factor α-stimulated hepatocytes. J Biol Chem 272:9825–9832

    Article  PubMed  Google Scholar 

  21. Iimuro Y, Nishiura T, Hellerbrand C, Behrns KE, Schoonhoven R, Grisham JW, Brenner DA (1998) NF-κB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 101:802–811

    PubMed  Google Scholar 

  22. Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1995) Stimulation of ionotropic glutamate receptors activates transcription factor NF-κB in primary neurons. Proc Natl Acad Sci USA 92:9618–9622

    CAS  PubMed  Google Scholar 

  23. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  Google Scholar 

  24. Kemler I, Fontana A (1999) Role of IκBα and IκBβ in the biphasic nuclear translocation of NF-κB in TNFα-stimulated astrocytes and in neuroblastoma cells. Glia 26:212–220

    Article  PubMed  Google Scholar 

  25. Knopfel T, Gähwiler BH (1992) Activity-induced elevations of intracellular calcium concentration in pyramidal and nonpyramidal cells of the CA3 region of rat hippocampal slice cultures. J Neurophysiol 68:961–963

    PubMed  Google Scholar 

  26. Ko HW, Park KY, Kim H, Han PL, Kim YU, Gwag BJ, Choi EJ (1998) Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor-κB by NMDA in cortical cell cultures. J Neurochem 71:1390–1395

    CAS  PubMed  Google Scholar 

  27. Kuhnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M, Kubicka S (2000) NF-κB mediates apoptosis through transcriptional activation of fas (CD95) in adenoviral hepatitis. J Biol Chem 275:6421–6427

    Article  PubMed  Google Scholar 

  28. Lezoualc’h F, Sagara Y, Holsboer F, Behl C (1998) High constitutive NF-κB activity mediates resistance to oxidative stress in neuronal cells. J Neurosci 18:3224–3232

    PubMed  Google Scholar 

  29. Lille ST, Lefler SR, Mowlavi A, Suchy H, Boyle EMJ, Farr AL, Su CY, Frank N, Mulligan DC (2001) Inhibition of the initial wave of NF-κB activity in rat muscle reduces ischemia/reperfusion injury. Muscle Nerve 24:534–541

    Article  PubMed  Google Scholar 

  30. Lin B, Williams-Skipp C, Tao Y, Schleicher MS, Cano LL, Duke RC, Scheinman RI (1999) NF-κB functions as both a pro-apoptotic and anti-apoptotic regulatory factor within a single cell type. Cell Death Differ 6:570–582

    Article  PubMed  Google Scholar 

  31. Lipsky RH, Xu K, Zhu D, Kelly C, Terhakopian A, Novelli A, Marini AM (2001) Nuclear factor κB is a critical determinant in N-methyl-d-aspartate receptor-mediated neuroprotection. J Neurochem 78:254–264

    Article  PubMed  Google Scholar 

  32. Liu ZQ, Kunimatsu M, Yang JP, Ozaki Y, Sasaki M, Okamoto T (1996) Proteolytic processing of nuclear factor κ B by calpain in vitro. FEBS Lett 385:109–113

    Article  PubMed  Google Scholar 

  33. Manna SK, Aggarwal BB (1999) Lipopolysaccharide inhibits TNF-induced apoptosis: role of nuclear factor-κB activation and reactive oxygen intermediates. J Immunol 162:1510–1518

    PubMed  Google Scholar 

  34. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  Google Scholar 

  35. Mattson MP (1997) Neuroprotective signal transduction: relevance to stroke. Neurosci Biobehav Rev 21:193–206

    Article  CAS  PubMed  Google Scholar 

  36. Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    CAS  PubMed  Google Scholar 

  37. Mattson MP, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor κB in neuronal survival and plasticity. J Neurochem 74:443–456

    Article  PubMed  Google Scholar 

  38. McInnis J, Wang C, Anastasio N, Hultman M, Ye Y, Salvemini D, Johnson KM (2002) The role of superoxide and nuclear factor-κB signaling in N-methyl-d-aspartate-induced necrosis and apoptosis. J Pharmacol Exp Ther 301:478–487

    Article  PubMed  Google Scholar 

  39. McKinsey TA, Brockman JA, Scherer DC, Al-Murrani SW, Green PL, Ballard DW (1996) Inactivation of IκBβ by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-κB. Mol Cell Biol 16:2083–2090

    PubMed  Google Scholar 

  40. Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M, Manning AM (1999) IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol 19:1526–1538

    PubMed  Google Scholar 

  41. Nakai M, Qin ZH, Chen JF, Wang Y, Chase TN (2000) Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-κB activation. J Neurochem 74:647–658

    Article  PubMed  Google Scholar 

  42. Newell DW, Malouf AT, Franck JE (1990) Glutamate-mediated selective vulnerability to ischemia is present in organotypic cultures of hippocampus. Neurosci Lett 116:325–330

    Article  PubMed  Google Scholar 

  43. Perkins ND (2000) The Rel/NF-κB family: friend and foe. Trends Biochem Sci 25:434–440

    CAS  PubMed  Google Scholar 

  44. Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ, Sonenshein GE (2001) Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene 20:1287–1299

    CAS  PubMed  Google Scholar 

  45. Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N (2002) Constitutive nuclear factor-κB activity is crucial for human retinoblastoma cell viability. Am J Pathol 161:2229–2240

    PubMed  Google Scholar 

  46. Qin ZH, Wang Y, Nakai M, Chase TN (1998) Nuclear Factor-κB contributes to excitotoxin-induced apoptosis in rat striatum. Mol Pharmacol 53:33–42

    CAS  PubMed  Google Scholar 

  47. Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN (1999) Nuclear factor κB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci 19:4023–4033

    PubMed  Google Scholar 

  48. Rimvall K, Keller F, Waser PG (1987) Selective kainic acid lesions in cultured explants of rat hippocampus. Acta Neuropathol 74:183–190

    PubMed  Google Scholar 

  49. Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-κB. J Neurochem 79:35–44

    CAS  PubMed  Google Scholar 

  50. Schoonbroodt S, Ferreira V, Best-Belpomme M, Boelaert JR, Legrand-Poels S, Korner M, Piette J (2000) Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IκB α in NF-κB activation by an oxidative stress. J Immunol 164:4292–4300

    PubMed  Google Scholar 

  51. Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IκBα. J Immunol 167:4919–4925

    PubMed  Google Scholar 

  52. Shou Y, Li N, Li L, Borowitz JL, Isom GE (2002) NF-κB-mediated up-regulation of Bcl-X(S) and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J Neurochem 81:842–852

    Article  PubMed  Google Scholar 

  53. Sonenshein GE (1997) Rel/NF-κB transcription factors and the control of apoptosis. Semin Cancer Biol 8:113–119

    Article  PubMed  Google Scholar 

  54. Suyang H, Phillips R, Douglas I, Ghosh S (1996) Role of unphosphorylated, newly synthesized IκBβ in persistent activation of NF-κB. Mol Cell Biol 16:5444–5449

    CAS  PubMed  Google Scholar 

  55. Tamatani M, Mitsuda N, Matsuzaki H, Okado H, Miyake S, Vitek MP, Yamaguchi A, Tohyama M (2000) A pathway of neuronal apoptosis induced by hypoxia/reoxygenation: roles of nuclear factor-κB and Bcl-2. J Neurochem 75:683–693

    Article  PubMed  Google Scholar 

  56. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S (1995) IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582

    CAS  PubMed  Google Scholar 

  57. Usami I, Kubota M, Bessho R, Kataoka A, Koishi S, Watanabe K, Sawada M, Lin YW, Akiyama Y, Furusho K (1998) Role of protein tyrosine phosphorylation in etoposide-induced apoptosis and NF-κB activation. Biochem Pharmacol 55:185–191

    Article  PubMed  Google Scholar 

  58. Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339

    Article  PubMed  Google Scholar 

  59. Vornov JJ, Tasker RC, Coyle JT (1991) Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp Neurol 114:11–22

    Article  PubMed  Google Scholar 

  60. Wang Y, Qin ZH, Nakai M, Chen RW, Chuang DM, Chase TN (1999) Co-stimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-κB activation and apoptosis. Neuroscience 94:1153–1162

    Article  PubMed  Google Scholar 

  61. Weil R, Laurent-Winter C, Israel A (1997) Regulation of IκBβ degradation. Similarities to and differences from IκBα. J Biol Chem 272:9942–9949

    Article  PubMed  Google Scholar 

  62. Whiteside ST, Epinat JC, Rice NR, Israel A (1997) IκBε, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J 16:1413–1426

    Article  PubMed  Google Scholar 

  63. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373

    PubMed  Google Scholar 

  64. Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281:1360–1363

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Professor Charles Giardina for invaluable insight and for the use of his laboratory for EMSA procedures. This work was supported by U.S. Army Medical Research grant DAMD17-99-C9090, and a Boehringer Ingelheim pre-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben A. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caba, E., Bahr, B.A. Biphasic NF-κB activation in the excitotoxic hippocampus. Acta Neuropathol 108, 173–182 (2004). https://doi.org/10.1007/s00401-004-0876-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0876-5

Keywords

Navigation