Skip to main content

Advertisement

Log in

Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We have previously shown that in the hippocampal formation of patients with acquired immunodeficiency syndrome (AIDS) there is neuronal atrophy, without cell loss. Because reductions in neuronal size are suggestive of associated neuritic alterations, we decided to study the dendritic trees of the main neuronal populations in the hippocampal formation. Material was obtained in five male AIDS patients and five male controls. After Golgi impregnation, the dendritic arborizations of dentate granule and hilar basket cells, and of CA3 and CA1 pyramidal cells, were hand traced, and their segments classified, counted and measured. We found an impoverishment of the dendritic trees in all neuronal populations in the AIDS group, which was more striking in the hilus and CA3 field. Specifically, hilar neurons had fewer dendritic segments, and reduced branching density and dendritic extent; in CA3 pyramids there was a decrease in the number of terminal segments in the basal trees, and a reduction in the total number of segments, number of medium order terminals, dendritic branching density and dendritic extent in the apical trees. In CA1 pyramids, the terminals were shorter in the apical trees and the dendritic spine density decreased in the basal trees, whereas in granule cells only the dendritic spine density was reduced in AIDS patients. Subtle signs suggestive of dendritic reorganization were observed. These results point to a regional vulnerability of the hippocampal formation to HIV infection, and might contribute to explaining the occurrence of dementia, as a consequence of overall reduction in the hippocampal neuronal receptive surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2 A
Fig. 3 A–G
Fig. 4 A–G
Fig. 5 A–G
Fig. 6 A–G
Fig. 7 A–G
Fig. 8 A–G

Similar content being viewed by others

References

  1. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914

    CAS  PubMed  Google Scholar 

  2. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    CAS  PubMed  Google Scholar 

  3. Andersen P, Holmqvist B, Voorhoeve PE (1966) Entorhinal activation of dentate granule cells. Acta Physiol Scand 66:448–460

    CAS  PubMed  Google Scholar 

  4. Blackstad TW (1956) Commissural connections of the hippocampal region in the rat with special reference to their mode of termination. J Comp Neurol 105:417–537

    PubMed  Google Scholar 

  5. Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat: an experimental study with silver impregnation methods J Comp Neurol 138:433–450

    Google Scholar 

  6. Coleman PD, Riesen AH (1968) Environmental effects on cortical dendritic fields. I. Rearing in the dark. J Anat 102:363–374

    CAS  PubMed  Google Scholar 

  7. De Ruiter JP, Uylings HBM (1987) Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 402:217–229

    PubMed  Google Scholar 

  8. De Voogd T, Nottebohm F (1981) Gonadal hormones induce dendritic growth in the adult avian brain. Science 214:202–204

    PubMed  Google Scholar 

  9. Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci Lett 54:219–224

    CAS  PubMed  Google Scholar 

  10. Eayrs TJ (1955) The cerebral cortex of normal and hypothyroid rats. Acta Anat (Basel) 25:160–183

    Google Scholar 

  11. Ferrer I, Gullotta F (1990) Down’s syndrome and Alzheimer’s disease: dendritic spine counts in the hippocampus. Acta Neuropathol 79:680–685

    CAS  PubMed  Google Scholar 

  12. Flood DG (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. II. Subiculum. Brain Res 540:83–95

    CAS  PubMed  Google Scholar 

  13. Flood DG, Buell SJ, Horwitz GJ, Coleman PD (1987) Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 402:205–216

    PubMed  Google Scholar 

  14. Flood DG, Guarnaccia M, Coleman PD (1987) Dendritic extent in human CA2–3 hippocampal pyramidal neurons in normal aging and senile dementia. Brain Res 409:88–96

    CAS  PubMed  Google Scholar 

  15. Frotscher M, Soriano E, Leranth C (1992) Cholinergic and GABAergic neurotransmission in the fascia dentata: electron microscopic immunocytochemical studies in rodents and primates. Epilepsy Res Suppl 7:65–78

    CAS  PubMed  Google Scholar 

  16. Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC (1985) Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230:1179–1181

    Google Scholar 

  17. Hanks SD, Flood DG (1991) Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer’s disease. I. CA1 of hippocampus. Brain Res 540:63–82

    CAS  PubMed  Google Scholar 

  18. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    CAS  PubMed  Google Scholar 

  19. Kaufmann WE (1992) Cerebrocortical changes in AIDS. Lab Invest 66:261–264

    CAS  PubMed  Google Scholar 

  20. Korbo L, Bogdanovic N (1999) Total number of hippocampal neurons in AIDS patients and controls. Acta Stereol 18:177–183

    Google Scholar 

  21. Korbo L, West M (2000) No loss of hippocampal neurons in AIDS patients. Acta Neuropathol 99:529–533

    CAS  PubMed  Google Scholar 

  22. Lindsay RD, Scheibel AB (1976) Quantitative analysis of dendritic branching pattern of granular cells foram human dentate gyrus. Exp Neurol 52:295–310

    PubMed  Google Scholar 

  23. Lorente de Nó R (1934) Studies on the structure of cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  24. Lubke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentate. J Neurophysiol 79:1518–1534

    CAS  PubMed  Google Scholar 

  25. Luthert PJ, Montgomery MM, Dean AF, Cook RW, Baskerville A, Lantos PL (1995) Hippocampal neuronal atrophy occurs in rhesus macaques following infection with simian immunodeficiency virus. Neuropathol Appl Neurobiol 21:529–534

    CAS  PubMed  Google Scholar 

  26. Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wiley CA (1992) Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol 32:321–329

    CAS  PubMed  Google Scholar 

  27. Masliah E, Ge N, Achim CL, Hansen LA, Wiley CA (1992) Selective neuronal vulnerability in HIV encephalitis. J Neuropathol Exp Neurol 51:585–593

    CAS  PubMed  Google Scholar 

  28. Masliah E, Ge N, Morey M, DeTeresa R, Terry RD, Wiley CA (1992) Cortical dendritic pathology in human immunodeficiency virus encephalitis. Lab Invest 66:285–291

    CAS  PubMed  Google Scholar 

  29. Millhouse OE (1973) The organization of the ventromedial hypothalamic nucleus. Brain Res 55:71–87

    Article  PubMed  Google Scholar 

  30. Montgomery M, Luthert P, Taffs F, Lantos P (1993) Dendritic spine abnormalities in Cynomolgus monkeys infected with simian immunodeficiency virus. Clin Neuropathol 12:S5–6

    Google Scholar 

  31. Nafstad PHJ (1967) An electron microscope study on the termination of the perforant path fibres in the hippocampus and the fascia dentate. Z Zellforsch Mikrosk Anat 76:532–542

    CAS  PubMed  Google Scholar 

  32. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex. I. Clinical features. Ann Neurol 19:517–524

    CAS  PubMed  Google Scholar 

  33. Petito CK, Roberts B, Cantando JD, Rabinstein A, Duncan R (2001) Hippocampal injury and alterations in neuronal chemokine co-receptor expression in patients with AIDS. J Neuropathol Exp Neurol 60:377–385

    CAS  PubMed  Google Scholar 

  34. Probst A, Basler V, Bron B, Ulrich J (1983) Neuritic plaques in senile dementias of Alzheimer type: a Golgi analysis in the hippocampal region. Brain Res 268:249–254

    CAS  PubMed  Google Scholar 

  35. Ramón y Cajal S (1911) Histologie du Systéme Nerveux de l’Homme et des Vertébrés, Vol II. Maloine, Paris

  36. Ramón y Cajal S, Castro F (1972) Métodos para la demonstración de la morfologia de las neuronas/procederes de Golgi y sus variantes. In: Salvat SA (ed) Elementos de Tecnica Micrografica del Sistema Nervioso, 2nd edn. Mallorca, Barcelona, pp 63–80

  37. Reyes E, Mohar A, Mallory M, Miller A, Masliah E (1994) Hippocampal involvement associated with human immunodeficiency virus encephalitis in Mexico. Arch Pathol Lab Med 118:1130–1134

    CAS  PubMed  Google Scholar 

  38. Sá MJ, Pereira A, Paula-Barbosa MM, Madeira MD (1999) Anatomical asymmetries in the human hippocampal formation. Acta Stereol 18:161–176

    Google Scholar 

  39. Sá MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Lecour H, Gonçalves V, Paula-Barbosa MM (2000) AIDS does not alter the total number of neurons in the hippocampal formation but induces cell atrophy. A stereological study. Acta Neuropathol 99:643–653

    PubMed  Google Scholar 

  40. Seress L, Frotscher M (1991) Basket cells in the monkey fascia dentata: a Golgi/electron microscopic study. J Neurocytol 20:915–928

    CAS  PubMed  Google Scholar 

  41. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56:487–491

    CAS  PubMed  Google Scholar 

  42. Suarez SV, Stankoff B, Conquy L, Rosenblum O, Seilhean D, Arvanitakis Z, Lazarini F, Bricaire F, Lubetzki C, Hauw JJ, Dubois B (2000) Similar subcortical pattern of cognitive impairment in AIDS patients with and without dementia. Eur J Neurol 7:151–158

    CAS  PubMed  Google Scholar 

  43. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Google Scholar 

  44. Uylings HBM, Ruiz-Marcos A, Van Pelt J (1986) The metric analysis of three-dimensional dendritic tree patterns: a methodological review. J Neurosci Methods 18:127–151

    CAS  PubMed  Google Scholar 

  45. Van Houten M, Brawer JR (1978) Cytology of neurons in the hypothalamic ventromedial nucleus in the adult male rat. J Comp Neurol 178:89–116

    PubMed  Google Scholar 

  46. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa RD, Grafe M, Hansen L, Terry R (1991) Neocortical damage during HIV Infection. Ann Neurol 29:651–657

    Google Scholar 

Download references

Acknowledgements

We thank Prof. J. Pinto da Costa from the Medical Legal Institute of Porto, for providing the hippocampal formation used as control material. Thanks are also due to Mrs. Ana C. Martins and Mr. A. Alfaia for excellent technical assistance. This work was supported by Fundação para a Ciência e a Tecnologia, Unit 121/94.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Sá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sá, M.J., Madeira, M.D., Ruela, C. et al. Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol 107, 97–110 (2004). https://doi.org/10.1007/s00401-003-0781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0781-3

Keywords

Navigation