Skip to main content
Log in

A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Seizures commonly occur in glioma patients, but their pathogenesis is poorly understood, in part due to a lack of valid and versatile experimental models. We have established a new model that enables comprehensive neuropathological and neurophysiological analysis on identical tissue preparations. Rat C6 glioma cells stably transfected with a green fluorescence protein (GFP) gene are transplanted into rat neocortex, giving rise to diffusely invading gliomas histologically resembling human glioblastomas. After 2 weeks, 500-µm-thick cerebral slices are prepared, stained with the voltage-sensitive dye RH795, and fluorescence changes associated with origin and spread of abnormal bioelectric activity upon washout of Mg2+ are detected by a 464-element photodiode array at a rate of 785 frames/s. GFP fluorescence promotes identification of tumor cells during electrophysiological experiments and in neuropathological analyses using frozen and paraffin-embedded tissue sections. By performing subsequent histological analysis of the slices examined neurophysiologically, origin and spread of abnormal activity can be correlated with structural and molecular (immunohistochemical) features. Specifically, we found that ictaform activity was initiated in cortical areas diffusely invaded by single tumor cells. This model is useful for further elucidating the electrophysiological, molecular and structural basis of glioma-associated epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Aronica E, Gorter JA, Jansen GH, Leenstra S, Yankaya B, Troost D (2001) Expression of connexin 43 and connexin 32 gap-junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol 101:449–459

    CAS  PubMed  Google Scholar 

  2. Artelt P, Morelle C, Ausmeier M, Fitzek M, Hauser H (1988) Vectors for efficient expression in mammalian fibroblastoid, myeloid and lymphoid cells via transfection or infection. Gene 68:213–219

    CAS  PubMed  Google Scholar 

  3. Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142:1–15

    Google Scholar 

  4. Duffau H, Capelle L, Lopes M, Bitar A, Sichez JP, Effenterre R van (2002) Medically intractable epilepsy from insular low-grade gliomas: Improvement after an extended lesionectomy. Acta Neurochir 144:563–573

    Article  CAS  Google Scholar 

  5. Haglund MM, Berger MS, Kunkel DD, Franck JE, Ghatan S, Ojemann GA (1992) Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas. J Neurosurg 77:209–216

    CAS  PubMed  Google Scholar 

  6. Hwang SL, Lieu AS, Kuo TH, Lin CL, Chang CZ, Huang TY, Howng SL (2001) Preoperative and postoperative seizures in patients with astrocytic tumours: analysis of incidence and influencing factors. J Clin Neurosci 8:426–429

    Article  CAS  PubMed  Google Scholar 

  7. Köhling R, Reinel J, Vahrenhold J, Hinrichs K, Speckmann EJ (2002) Spatio-temporal patterns of neuronal activity: analysis of optical imaging data using geometric shape matching. J Neurosci Methods 114:17–23

    Article  PubMed  Google Scholar 

  8. Köhling R, Vreugdenhil M, Bracci E, Jefferys JGR (2000) Ictal epileptiform activity is facilitated by hippocampal GABAA receptor-mediated oscillations. J Neurosci 20:6820–6829

    PubMed  Google Scholar 

  9. Labrakakis C, Patt S, Weydt P, Cervos-Navarro J, Meyer R, Kettenmann H (1997) Action potential-generating cells in human glioblastomas. J Neuropathol Exp Neurol 56:243–254

    Google Scholar 

  10. Marco P, Sola RG, Ramón y Cajal S, DeFelipe J (1997) Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy. Brain Res Bull 44:47–66

    Article  CAS  PubMed  Google Scholar 

  11. Moots PL, Maciunas RJ, Eisert DR, Parker RA, Laporte K, Abou-Khalil B (1995) The course of seizure disorders in patients with malignant gliomas. Arch Neurol 52:717–724

    CAS  PubMed  Google Scholar 

  12. Oberndorfer S, Schmal T, Lahrmann H, Urbanits S, Lindner K, Grisold W (2002) The frequency of seizures in patients with primary brain tumors or cerebral metastases. Wien Klin Wochenschr 114:911–916

    PubMed  Google Scholar 

  13. Patt S, Steenbeck J, Hochstetter A, Kraft R, Huonker R, Haueisen J, Haberland N, Ebmeier K, Hliscs R, Fiehler J, Nowak H, Kalff R (2000) Source localization and possible causes of interictal epileptic activity in tumor-associated epilepsy. Neurobiol Dis 7:260–269

    CAS  PubMed  Google Scholar 

  14. Paulus W, Baur I, Beutler AS, Reeves SA (1996) Diffuse brain invasion of glioma cells requires beta 1 integrins. Lab Invest 75:819–826

    CAS  PubMed  Google Scholar 

  15. Senner V, Kismann E, Puttmann S, Hoess N, Baur I, Paulus W (2002) L1 expressed by glioma cells promotes adhesion but not migration. Glia 38:146–154

    Article  PubMed  Google Scholar 

  16. Straub H, Köhling R, Frieler A, Griegat M, Speckmann E-J (2000) Differential effects of nifedipine on epileptiform activity in hippocampal and neocortical slices of guinea pigs. Neuroscience 95:63–72

    Article  CAS  PubMed  Google Scholar 

  17. Tsau Y, Guan L, Wu J-Y (1999) Epileptiform activity can be initiated in various neocortical layers: an optical imaging study. J Neurophysiol 82:1965–1973

    CAS  PubMed  Google Scholar 

  18. Whittle IR, Macarthur DC, Malcolm GP, Li M, Washington K, Ironside JW (1998) Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumours. J Neurooncol 36:231–242

    CAS  PubMed  Google Scholar 

  19. Wolf HK, Roos D, Blümcke I, Pietsch T, Wiestler OD (1996) Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 91:376–384

    Article  CAS  PubMed  Google Scholar 

  20. Zilles K (1985) The cortex of the rat: a stereotaxic atlas. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  21. Zochowski M, Wachowiak M, Falk CX, Cohen LB, Lam YW, Antic S, Zecevic D (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Anke Hahnenkamp, Institute of Physiological Chemistry, University Hospital Muenster, for providing the plasmid pMPSGGFP, and Professor Ulrich Mußhoff, Institute of Physiology, University Hospital Muenster, for advice in confocal microscopy. We are grateful to Mrs. Birgit Herrenpoth and Mrs. Andrea Wagner for excellent technical assistance. This study was supported by grant KO 1779/4-1 from Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Paulus.

Additional information

V.S. and R.K. contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senner, V., Köhling, R., Püttmann-Cyrus, S. et al. A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area. Acta Neuropathol 107, 1–7 (2004). https://doi.org/10.1007/s00401-003-0771-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0771-5

Keywords

Navigation