Skip to main content

Advertisement

Log in

Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The molecular signaling pathways involved in regeneration after muscle damage have not been identified. In the present study, we tested the hypothesis that calcineurin, a calcium-regulated phosphatase recently implicated in the signaling of fiber-type conversion and muscle hypertrophy, is required to induce skeletal muscle remodeling. The amount of calcineurin and dephosphorylated nuclear factor of activated T cells c1 (NFATc1) proteins was markedly increased in the regenerating muscle of rats. The amount of calcineurin co-precipitating with NFATc1 and GATA-2, and NFATc1 co-precipitating with GATA-2 gradually increased in the tibialis anterior muscle after bupivacaine injection. Calcineurin protein was present in the proliferating satellite cells labeled with BrdU in the damaged muscle after 4 days. In contrast, calcineurin was not detected in the quiescent nonactivating satellite cells expressing Myf-5. At 4 days post injection, many macrophages detected in the damaged and regenerating area did not possess calcineurin protein. Calcineurin protein was abundant in many myoblasts and myotubes that expressed MyoD and myogenin at 4 and 6 days post injection. In the intact muscle, no immunoreactivity of calcineurin or BrdU was detected in the cell membrane, cytosol or the extracellular connective tissue. In mice, intraperitoneal injection of cyclosporin A, a potent inhibitor of calcineurin, induced extensive inflammation, marked fiber atrophy, the appearance of immature myotubes, and calcification in the regenerating muscle compared with phosphate-buffered saline-administered mice. Thus, calcineurin may have an important role in muscle regeneration in association with NFATc1 and GATA-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig.  5.

Similar content being viewed by others

References

  1. Abbott KL, Friday BB, Thaloor D, Murphy TJ, Pavlath GK (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9:2905–2916

    CAS  PubMed  Google Scholar 

  2. Beauchamp JR, Heslop L, Yu DSW, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1233

    Article  CAS  PubMed  Google Scholar 

  3. Bischoff R (1994) The satellite cell and muscle regeneration. In: Engel AG, Armstrong F (eds) Myology. McGraw-Hill, New York, pp 97–118

  4. Calvo S, Venepally P, Cheng J, Buonanno A (1999) Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol Cell Biol 19:515–525

    CAS  PubMed  Google Scholar 

  5. Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW (2000) Insulin- like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem 275:35942–35952

    Article  CAS  PubMed  Google Scholar 

  6. Chin ER, Allen DG (1996) Changes in intracellular free Ca2+ concentration during constant 10 Hz stimulation of mouse single fibers. Physiologist 39:A75

    Google Scholar 

  7. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    CAS  PubMed  Google Scholar 

  8. Coleman ME, Demayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  9. Conboy IM, Manoli D, Mhaiskar V, Jones PP (1999) Calcineurin and vacuolar-type H+-ATPase modulate macrophage effector functions. Proc Natl Acad Sci USA 96:6324–6329

    Article  CAS  PubMed  Google Scholar 

  10. deFazio A, Leary JA, Hedley DW, Tattersal MH (1987) Immunohistochemical detection of proliferating cells in vivo. J Histochem Cytochem 35:571–577

    CAS  PubMed  Google Scholar 

  11. Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20:6600–6611

    Article  CAS  PubMed  Google Scholar 

  12. DeVol DL, Rotwein P, Levis Sadow J, Npvakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95

    CAS  PubMed  Google Scholar 

  13. Dunn SE, Burns JL, Michel RN (1999) Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 274:21908–21912

    CAS  PubMed  Google Scholar 

  14. Dunn SE, Chin ER, Michel RN (2000) Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 151:663–672

    Article  CAS  PubMed  Google Scholar 

  15. Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135:431–440

    CAS  PubMed  Google Scholar 

  16. Friday BB, Pavlath GK (2001) A calcineurin-and NFAT-dependent pathway regulates Myf-5 gene expression in skeletal muscle reserve cells. J Cell Sci 114:303–310

    CAS  PubMed  Google Scholar 

  17. Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–665

    CAS  PubMed  Google Scholar 

  18. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  19. Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153:329–338

    CAS  PubMed  Google Scholar 

  20. Jennische E, Matejka GL (1992) IGF-I binding and IGF-I expression in regenerating skeletal muscle. Acta Physiol Scand 146:79–86

    CAS  PubMed  Google Scholar 

  21. Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA (1996) Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281–291

    CAS  PubMed  Google Scholar 

  22. Kurek JB, Nouri S, Kannourakis G, Murphy M, Lawrence A (1996) Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19:1291–1301

    Article  CAS  PubMed  Google Scholar 

  23. McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137:1–4

    Article  CAS  PubMed  Google Scholar 

  24. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    CAS  PubMed  Google Scholar 

  25. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ (1998) Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 95:13893–13898

    Article  CAS  PubMed  Google Scholar 

  26. Merly F, Lescaudron L, Rouaud T, Crossin F, Gardahaut MF (1999) Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 22:724–732

    Article  CAS  PubMed  Google Scholar 

  27. Molkentin JD, Lu, J-R, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    CAS  PubMed  Google Scholar 

  28. Musaró A, McCullagh KJA, Naya FJ, Olson EN, Rosenthal N (1999) IGF-I induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 40:581–585

    Google Scholar 

  29. Musaró A, McCullagh K, Paul A, Houghton L, Dobrowolony G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  Google Scholar 

  30. Naya FJ, Mercer B, Shelton J, Richadson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548

    CAS  PubMed  Google Scholar 

  31. Pimorady-Esfahani A, Grounds MD, McMenamin PG (1997) Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle Nerve 20:158–166

    Article  CAS  PubMed  Google Scholar 

  32. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD-/-cells derived from adult skeletal muscle. J Cell Biol 144:631–643

    Article  CAS  PubMed  Google Scholar 

  33. Sakuma K, Watanabe K, Totsuka T, Uramoto I, Sakamoto K, Sano M (1998) Differential adaptations of insulin-like growth factor, basic fibroblast growth factor and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropathol 95:123–130

    Article  CAS  PubMed  Google Scholar 

  34. Sakuma K, Watanabe K, Sano M, Sakamoto K, Uramoto I, Totsuka T (1999) The adaptive response of MyoD family protein in the overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1428:284–292

    Article  CAS  PubMed  Google Scholar 

  35. Sakuma K, Watanabe K, Sano M, Sakamoto K, Uramoto I, Totsuka T (2000) The adaptive response of transforming growth factor-β2 and βRII in the overloaded, regenerating and denervated muscles of rats. Acta Neuropathol 99:177–185

    CAS  Google Scholar 

  36. Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T (2000) Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1497:77–88

    Article  CAS  PubMed  Google Scholar 

  37. Sakuma K, Watanabe K, Sano M, Uramoto I, Nakano H, Li Y-J, Kaneda S, Sorimachi Y, Yoshimoto K, Yasuhara M, Totsuka T (2001) A possible role for BDNF, NT-4 and TrkB in the spinal cord and muscle of rat subjected to mechanical overload, bupivacaine injection and axotomy. Brain Res 907:1–19

    CAS  Google Scholar 

  38. Semsarian C, Wu M-J, Ju Y-K, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 40:576–581

    Google Scholar 

  39. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693

    Article  CAS  PubMed  Google Scholar 

  40. Tamaki T, Akatsuka A, Tokunaga M, Ishige K, Uchiyama S, Shiraishi T (1997) Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats. Am J Physiol 273:C246–C256

    CAS  PubMed  Google Scholar 

  41. Torgan CE, Daniels MP (2001) Regulation of myosin heavy chain expression during rat skeletal muscle development in vitro. Mol Biol Cell 12:1499–1508

    CAS  PubMed  Google Scholar 

  42. Westerblad H, Allen DG (1991) Changes in myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98:615–635

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grant nos. 10670775, 11780059, 12470108 and 13780029 from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Sakuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, K., Nishikawa, J., Nakao, R. et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol 105, 271–280 (2003). https://doi.org/10.1007/s00401-002-0647-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-002-0647-0

Keywords

Navigation