Skip to main content
Log in

Investigation of water-based and oil-based ferrofluids with a new magnetorheological cell: effect of the microstructure

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A new magnetorheological cell is implemented to perform measurements of temperature-controlled flows and determine viscoelastic properties in magnetic complex fluids under applied continuous magnetic fields. The flow properties of water-based and oil-based ferrofluids with volume fractions up to 10 % are investigated here in various situations of interparticle interaction, leading also to various microstructures already known from previous works. Shear flow behaviors under magnetic fields resulting in a competition between magnetic and hydrodynamic forces are directly related to the microscopic structure of the probed magnetic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arias JL, Gallardo V, Gomez-Lopera S, Delgado A (2005) Loading of 5-fluorouracil to poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Biomed Nanotech 1:214–223

    Article  Google Scholar 

  • Avdeev MV, Dubois E, Mériguet G, Wandersman E, Garamus VM, Feoktystov AV, Perzynski R (2009) Small-angle neutron scattering analysis of a water-based magnetic fluid with charge stabilization: contrast variation and scattering of polarized neutrons. J Appl Cryst 42:1009–1019

    Article  Google Scholar 

  • Bacri JC, Perzynski R, Salin D, Servais J (1987) Magnetic transient birefringence of ferrofluids: particle size determination. J Phys France 48:1385–1391

    Article  Google Scholar 

  • Bacri JC, Perzynski R, Salin D, Cabuil V, Massart R (1989) Phase diagram of an ionic magnetic colloid: experimental study of the effect of ionic strength. J Colloid Interface Sci 132:43–53

    Article  Google Scholar 

  • Bacri JC, Perzynski R, Salin D, Cabuil V, Massart R (1990) Ionic ferrofluids: a crossing of chemistry and physics. J Magn Magn Mater 85:27–32

    Article  Google Scholar 

  • Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J of Magn Magn Mater 149:6–9

    Article  Google Scholar 

  • Berkovski B (1996) ed., Magnetic fluids and applications, Handbook Begell House Inc. Publ. New York

  • Borin D, Odenbach S (2009) Magnetic measurements on frozen ferrofluids as a method for estimating the magnetoviscous effect. J Phys Condens Matter 21:246002 (5pp)

    Article  Google Scholar 

  • Cousin F, Cabuil V, Levitz P (2002) Magnetic colloidal particles as probes for the determination of the structure of laponite suspensions. Langmuir 18:1466–1473

    Article  Google Scholar 

  • Cousin F, Dubois E, Cabuil V (2003) Tuning the interactions of a magnetic colloidal suspension. Phys Rev E 68:021405-1–021405-9

    Article  Google Scholar 

  • Cruz CD, Sandre O, Cabuil V (2005) Phase behavior of nanoparticles in a thermotropic liquid crystal. J Phys Chem B 109:14292–14299

    Article  Google Scholar 

  • Dubois E, Cabuil V, Boué F, Perzynski R (1999) Structural analogy between aqueous and oily magnetic fluids. J Chem Phys 111:7147–7160

    Article  Google Scholar 

  • Dubois E, Perzynski R, Boué F, Cabuil V (2000) Liquid-gas transitions in charged colloidal dispersions: small-angle neutron scattering coupled with phase diagrams of magnetic fluids. Langmuir 16:5617–5625

    Article  Google Scholar 

  • Duran J, Arias J, Gallardo V, Delgado A (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983

    Article  Google Scholar 

  • Frka-Petesic B (2010) Ph.D. thesis, UPMC-Paris 6

  • Frka-Petesic B, Dubois E, Almasy L, Dupuis V, Cousin F, Perzynski R (2013) Structural probing of clusters and gels of self-aggregated magnetic nanoparticles. Magnetohydrodynamics 49:328–338

    Google Scholar 

  • Galicia A, Cousin F, Dubois E, Sandre O, Cabuil V, Perzynski R (2009) Static and dynamic structural probing of swollen polyacrylamide ferrogels. Soft Matter 5:2614–2624

    Google Scholar 

  • Galindo-Gonzalez C, de Vicente J, Ramos-Tejada M, Lopez-Lopez M, Gonzalez-Caballero F, Duran J (2005) Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles. Langmuir 21:4410–4419

    Article  Google Scholar 

  • Galindo-Gonzalez C, Lopez-Lopez M, Duran J (2012) J Applied Physics 112:043917-1–043917-11

    Article  Google Scholar 

  • Gazeau F, Dubois E, Bacri JC, Boué F, Cebers A, Perzynski R (2002) Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering. Phys Rev E 65:031403-1–031403-15

    Article  Google Scholar 

  • Gazeau F, Boué F, Dubois E, Perzynski R (2003) Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions. J Phys Condens Matter 15:S1305–S1334

    Article  Google Scholar 

  • Gomez-Lopera S, Arias J, Gallardo V, Delgado A (2006) Colloidal stability of magnetite/poly(lactic acid) core/shell nanoparticles. Langmuir 22:2816–2821

    Article  Google Scholar 

  • Gomez-Ramirez A, Lopez-Lopez M, Duran J (2011) Steady shear flow of magnetic fiber suspensions: theory and comparison with experiments. J Rheol 55:43–68

    Article  Google Scholar 

  • Hasmonay E, Bée A, Bacri JC, Perzynski R (1999) pH Effect on an ionic ferrofluid: evidence of a thixotropic magnetic phase. J Phys Chem B 103:6421–6428

    Article  Google Scholar 

  • Hong R, Ren Z, Han Y, Zheng HLY, Ding J (2007) Rheological properties of water-based Fe3O4 ferrofluids. Chem Eng Sci 62:5912–5924

    Article  Google Scholar 

  • Hong R, Li J, Zhang S, Li H, Zheng Y, Ding J, Wei D (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255:3485–3492

    Article  Google Scholar 

  • Huang JP, Wang ZW, Holm C (2005) Computer simulations of the structure of colloidal ferrofluids. Phys Rev E 71:061203-1–061203-11

    Google Scholar 

  • Itri R, Depeyrot J, Tourinho F, Sousa M (2001) Nanoparticle chain-like formation in electrical double-layered magnetic fluids evidenced by small-angle X-ray scattering. Eur Phys J E 4:201–208

    Article  Google Scholar 

  • Kroell M, Pridoehl M, Zimmermann L, Pop S, Odenbach S (2005) Magnetic and rheological characterization of novel ferrofluids. J Magn Magn Mater 289:21–24

    Article  Google Scholar 

  • Kuzhir P, Gomez-Ramirez A, Lopez-Lopez M, Bossis G, Zubarev A (2011) J Non-Newtonian Fluid Mech 166

  • Larson RG (1999) The structure and rheology of complex fluids, Oxford Univ. Press Inc., N.Y

  • Lopez-Lopez M, Zugaldia A, Gonzalez-Caballero F, Duran J (2006) Sedimentation and redispersion phenomena in iron-based magnetorheological fluids. J Rheol 50:543–560

    Article  Google Scholar 

  • Lopez-Lopez M, Zugaldia A, Gomez-Ramirez A, Gonzalez-Caballero F, Duran J (2008) Effect of particle aggregation on the magnetic and magnetorheological properties of magnetic suspensions. J Rheol 52:901–912

    Article  Google Scholar 

  • Massart R (1980) Preparation of aqueous ferrofluids without using surfactant—behavior as a function of the pH and the counterions. CR Acad Sci Paris Ser C 291:1–3

    Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn MAG-17:1247–1248

    Article  Google Scholar 

  • Mériguet G, Dubois E, Perzynski R (2003) Liquid-liquid phase-transfer of magnetic nanoparticles in organic solvents. J Colloid Interface Sci 267:78–85

    Article  Google Scholar 

  • Mériguet G, Cousin F, Dubois E, Boué F, Cebers A, Farago B, Perzynski R (2006) What tunes the structural anisotropy of magnetic fluids under a magnetic field. J Phys Chem B 110:4378–4386

    Article  Google Scholar 

  • Mériguet G, Wandersman E, Dubois E, Cebers A, de Andrade GJ, Demouchy G, Depeyrot J, Robert A, Perzynski R (2012) Magnetohydrodynamics 48:415–426

    Google Scholar 

  • Mertelj A, Cmok L, Copic M (2009) Anomalous diffusion in ferrofluids. Phys Rev E 79:041402-1–041402-8

    Article  Google Scholar 

  • Odenbach S, Stork H (1998) Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates. J Magn Magn Mater 183:188–194

    Article  Google Scholar 

  • Odenbach S, Rylewicz T, Heyen M (1999) A rheometer dedicated for the investigation of viscoelastic effects in commercial magnetic fluids. J Magn Magn Mater 201:155–158

    Article  Google Scholar 

  • Park B, Fang F, Choi H (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253

    Article  Google Scholar 

  • Patel R (2011) Mechanism of chain formation in nanofluid based MR fluids. J Magn Magn Mater 323:1360–1363

    Article  Google Scholar 

  • Ponton A, Bée A, Hasmonay E, Perzynski R, Talbot D (2002) Dynamic probing of thixotropic magnetic gels. J Magn Magnc Mater 252:232–234

    Article  Google Scholar 

  • Ponton A, Bée A, Talbot D, Perzynski R (2005) Regeneration of thixotropic magnetic gels studied by mechanical spectroscopy: the effect of the pH. J Phys Condens Matter 17:821–836

    Article  Google Scholar 

  • Ramos J, Hidalgo-Alvarez R, de Vicente J (2011) Steady shear magnetorheology of inverse ferrofluids. J Rheol 55:127–152

    Article  Google Scholar 

  • Ren Z, Han Y, Hong R, Ding J, Li H (2008) On the viscosity of magnetic fluid with low and moderate solid fraction. Particuology 6:191–198

    Article  Google Scholar 

  • Rodriguez-Arco L, Lopez-Lopez M, Duran J, Zubarev A, Chirikov D (2011) Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter 23:455101 (15pp)

    Article  Google Scholar 

  • Sandre O, Browaeys J, Perzynski R, Bacri JC, Cabuil V, Rosensweig RE (1999) Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag. Phys Rev E 59:1736–1746

    Article  Google Scholar 

  • Santiago-Quinones DI, Raj K, Rinaldi C (2013) A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior. Rheol Acta 52:719–726

    Article  Google Scholar 

  • Shah K, Upadhyay RV, Aswal VK (2012) Influence of large size magnetic particles on the magneto-viscous properties of ferrofluid. Smart Mater Struct 21:075005 (12pp)

    Article  Google Scholar 

  • Shahnazian H, Odenbach S (2007) Int J Mod Phys B 21:4806–4812

    Article  Google Scholar 

  • Shahnazian H, Odenbach S (2008a) New driving unit for the direct measurement of yield stress with a stress controlled rheometer. Appl Rheol 18:54974 (7pp)

    Google Scholar 

  • Shahnazian H, Odenbach S (2008b) Rheological investigations of ferrofluids with a shear stress controlled rheometer. J Phys Condens Matter 20:204137 (4pp)

    Article  Google Scholar 

  • Shahnazian H, Graf D, Borin D, Odenbach S (2009) Rheology of a ferrofluid based on nanodisc cobalt particles. J Phys D Appl Phys 42:205004 (6pp)

    Article  Google Scholar 

  • Shima PD, Philip J (2011) Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C 115:20097–20104

    Article  Google Scholar 

  • Shliomis MI (1972) Effective viscosity of magnetic suspensions. Zh Eksp Teor Fiz 61:2411–2418 [Sov Phys JETP 34: 1291-1294]

    Google Scholar 

  • Soto-Aquino D, Rinaldi C (2010) Magnetoviscosity in dilute ferrofluids from rotational Brownian dynamics simulations. Phys Rev E 82:046310-1–046310-10

    Article  Google Scholar 

  • Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25:3249–3254

    Article  Google Scholar 

  • Vereda F, de Vicente J, Segovia-Gutierrez J, Hidalgo-Alvarez R (2011) Average particle magnetization as an experimental scaling parameter for the yield stress of dilute magnetorheological fluids. J Phys D Appl Phys 44:425002 (6pp)

    Article  Google Scholar 

  • Vicente JD, Klingenberg D, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7:3701–3710

    Article  Google Scholar 

  • Volkova O, Bossis G, Guyot G, Bashtovoi V, Reks A (2000) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44:91–104

    Article  Google Scholar 

  • Wandersman E, Dubois E, Cousin F, Dupuis V, Mériguet G, Perzynski R, Cebers A (2009a) Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid. EPL 86:10005 (6pp)

    Article  Google Scholar 

  • Wandersman E, Dupuis V, Dubois E, Perzynski R (2009b) Rotational dynamics and aging in a magnetic colloidal glass. Phys Rev E 80:041504-1–041504-12

    Article  Google Scholar 

  • Zubarev A, Odenbach S, Fleischer J (2002) Rheological properties of dense ferrofluids. Effect of chain-like aggregates. J Magn Magn Mater 252:241–243

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by E. U. under grant no. 235673 from Intra European Fellowship Seventh Framework Program (Marie Curie Actions) and by the program Thermelec which enabled the rheometer modifications and the magnetorheological cell development. The authors are grateful to Dr. Sophie Neveu for the synthesis of cobalt ferrite nanoparticles. J. Servais and D. Charalampous are also acknowledged for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Ponton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo-Gonzalez, C., Ponton, A., Bee, A. et al. Investigation of water-based and oil-based ferrofluids with a new magnetorheological cell: effect of the microstructure. Rheol Acta 55, 67–81 (2016). https://doi.org/10.1007/s00397-015-0892-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0892-5

Keywords

Navigation