Skip to main content
Log in

Role of droplet bridging on the stability of particle-containing immiscible polymer blends

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The effect of micron-sized hydrophobic calcium carbonate particles on the stabilization of polydimethylsiloxane (PDMS)/polyisobutylene (PIB) immiscible model blends is investigated in this study. The analytical splitting of bulk and liquid–liquid interface contributions from the droplet bridging one is successfully performed due to the negligible contribution of hydrophobic microparticles to the bulk rheology of phases. The presence of particles at the fluid–fluid interface is supported by wetting parameter calculation and verified by optical microscopy observations. Moreover, direct visualizations shows that particles are able to form clusters of droplets by simultaneously adsorbing at two fluid–fluid interfaces and glue-dispersed droplets together, probably due to the patchy interactions induced by heterogeneous distribution of particles along the interface. Rheological studies show that the flow-induced coalescence is slowed down upon addition of particles and almost suppressed with the addition of 4 wt% particles. The linear viscoelastic response is modeled to estimate interfacial tension by considering the contribution of particle-induced droplet aggregation in addition to bulk and droplet deformation ones. From linear and nonlinear viscoelastic responses, the improved stability of filled polymer blends is attributed to the interfacial rheology and/or the bridged structure of droplets, even though the interfacial area is not fully covered by particles. Furthermore, Doi–Ohta scaling relations are investigated by employing stress growth response upon step-up of shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acharya H, Kuila T, Srivastava SK, Bhowmick AK (2008) Effect of layered silicate on EPDM/EVA blend nanocomposite: dynamic mechanical, thermal and swelling properties. Polym Compos 29:443–450

    Article  Google Scholar 

  • Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehan D, Panagiotopoulos AZ, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Mater 8:354–359

    Article  Google Scholar 

  • Ansari M, Haghtalab A, Semsarzadeh MA (2006) Effects of compatibilization on rheological properties of PS/PB blends and investigation of Doi–Ohta scaling relationship in double start-up of shear experiments. Rheol Acta 45:983–993

    Article  Google Scholar 

  • Arditty S, Whitby CP, Binks BP, Schmitt V, Leal-Calderon F (2003) Some general features of limited coalescence in solid-stabilized emulsions. Eur Phys J E 11:273–281

    Article  Google Scholar 

  • Aveyard R, Clint JH, Nees D, Paunov VN (2000) Compression and structure of monolayers of charged latex particles at air-water and octane-water interfaces. Langmuir 16:1969–1979

    Article  Google Scholar 

  • Beris AN, Stiakakis E, Vlassopoulos D (2008) A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions. Non-Newtonian Fluid Mech 152:76–85

    Article  Google Scholar 

  • Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  Google Scholar 

  • Binks BP, Lumsdon SO (2000a) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631

    Article  Google Scholar 

  • Binks BP, Lumsdon SO (2000b) Catastrophic phase inversion of water-in-oil emulsions stabilised by hydrophobic silica. Langmuir 16:2539–2547

    Article  Google Scholar 

  • Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17:4540–4547

    Article  Google Scholar 

  • Binks BP, Whitby CP (2004) Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20:1130–1137

    Article  Google Scholar 

  • Boode K, Walstra P (1993) Partial coalescence in oil-in-water emulsions.1. Nature of the aggregation. Colloids Surf A 81:121–137

    Article  Google Scholar 

  • Boode K, Walstra P, Degrootmostert AEA (1993) Partial coalescence in oil-in-water emulsions. 2. Influence of the properties of the fat. Colloids Surf A 81:139–151

    Article  Google Scholar 

  • Bousmina M, Aouina M, Chaudhry B, Guénette R, Bretas RES (2001) Rheology of polymers blends: non-linear model for viscoelastic emulsions undergoing high deformation flows. Rheol Acta 40:538–551

    Article  Google Scholar 

  • Chaffey CE, Brenner H (1967) A second-order theory for shear deformation of drops. J Colloid Interface Sci 24:258–269

    Article  Google Scholar 

  • Chopra D, Vlassopoulos D, Hatzikiriakos SG (2000) Rheological response of phase separating polymer blends: poly(styrene-co-maleic anhydride)/poly(methyl methacrylate). J Rheol 44:27–45

    Article  Google Scholar 

  • Coussot P, Leonov AI, Piau JM (1993) Rheology of concentrated dispersal systems in a low molecular weight matrix. J Non-Newtonian Fluid Mech 46:94–114

    Article  Google Scholar 

  • Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. I. J Chem Phys 95:1242–1248

    Article  Google Scholar 

  • Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040

    Article  Google Scholar 

  • Elias L, Fenouillot F, Majeste JC, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49:4378–4385

    Article  Google Scholar 

  • Foudazi R, Nazockdast H (2010) Rheology of polypropylene/liquid crystalline polymer blends: effect of compatibilizer and silica. Appl Rheol 20:12218

    Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993a) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Article  Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993b) Linear viscoelasticity of incompatible polymer blends in the melt in relation with interfacial properties. J Phys IV(3):1525–1534

    Google Scholar 

  • Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon-black in immiscible polymer blends—a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974

    Article  Google Scholar 

  • Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10:1227–1235

    Article  Google Scholar 

  • Hemelrijck EV, Puyvelde PV, Velankar S, Macosko CW, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J Rheol 48:143–158

    Article  Google Scholar 

  • Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer. Angew Chem Int Ed 45:773–776

    Article  Google Scholar 

  • Iza M, Bousmina M (2000) Nonlinear rheology of immiscible polymer blends: step strain experiments. J Rheol 44:1363–1384

    Article  Google Scholar 

  • Iza M, Bousmina M, Jérôme R (2001) Rheology of compatibilized immiscible viscoelastic polymer blends. Rheol Acta 40:10–22

    Article  Google Scholar 

  • Jacobs U, Fahrlander M, Winterhalter J, Friedrich C (1999) Analysis of Palierne’s emulsion model in the case of viscoelastic interfacial properties. J Rheol 43:1495–1509

    Article  Google Scholar 

  • Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81

    Article  Google Scholar 

  • Lee MN, Chan HK, Mohraz A (2012) Characteristics of Pickering emulsion gels formed by droplet bridging. Langmuir 28:3085–3091

    Article  Google Scholar 

  • Leonov AI (1990) On the rheology of filled polymers. J Rheol 34:1039–1068

    Article  Google Scholar 

  • Masalova I, Malkin AYa, Foudazi R (2008) Yield stress as measured in steady shearing and in oscillations. Appl Rheol 18:44790

    Google Scholar 

  • Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475

    Article  Google Scholar 

  • Nagarkar SP, Velankar SS (2012) Morphology and rheology of ternary fluid/fluid/solid systems. Soft Matter 8:8464–8477

    Article  Google Scholar 

  • Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T (1999) Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene/polycarbonate blend melt. J Rheol 43:951–965

    Article  Google Scholar 

  • Onuki A (1987) Viscosity enhancement by domains in phase-separating fluids near the critical point: proposal of critical rheology. Phys Rev A 35:5149–5155

    Article  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  Google Scholar 

  • Pickering SU (1908) Emulsions. J Chem Soc Abstr 91–92:2001–2021

    Google Scholar 

  • Ramsden W (1903) Separation of solids in the surface-layers of solutions and suspensions (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account. Proc R Soc Lond A 72:156–164

    Google Scholar 

  • Reynaert S, Moldenaers P, Vermant J (2006) Control over colloidal aggregation in monolayers of latex particles at the oil water interface. Langmuir 22:4936–4945

    Article  Google Scholar 

  • Reynaert S, Moldenaers P, Vermant J (2007) Interfacial rheology of stable and weakly aggregated two-dimensional suspensions. Phys Chem Chem Phys 9:6463–6475

    Article  Google Scholar 

  • Sacanna S, Kegel WK, Philipse AP (2007) Thermodynamically stable Pickering emulsions. Phys Rev Lett 98:158301

    Article  Google Scholar 

  • Sigillo IL, Di Santo, Guido S, Grizzuti N (1997) Comparative measurements of interfacial tension in a model polymer blend. Polym Eng Sci 37:1540–1549

    Article  Google Scholar 

  • Stancik EJ, Kouhkan M, Fuller GG (2004) Coalescence of particle-laden fluid interfaces. Langmuir 20:90–94

    Article  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends. Polym Bull 25:265–271

    Article  Google Scholar 

  • Takahashi Y, Noda I (1995) Immiscible polymer blends under shear flow. In: Nakatani AI, Dadmun MD (eds) Flow-induced structure in polymers. American Chemical Society, Washington DC

    Google Scholar 

  • Takahashi Y, Kurashima N, Noda I, Doi M (1994a) Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids. J Rheol 38:699–712

    Article  Google Scholar 

  • Takahashi Y, Kitade S, Kurashima N, Noda I (1994b) Viscoelastic properties of immiscible polymer blends under steady and transient shear flows. Polym J 26:1206–1212

    Article  Google Scholar 

  • Tambe DE, Sharma MM (1994) The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Adv Colloid Interface Sci 52:1–63

    Article  Google Scholar 

  • Thareja P (2008) Study of particles at fluid/fluid interfaces. PhD Thesis, Chemical Engineering, University of Pittsburgh , Pittsburgh

    Google Scholar 

  • Thareja P, Velankar SS (2007) Particle-induced bridging in immiscible polymer blends. Rheol Acta 46:405–412

    Article  Google Scholar 

  • Thareja P, Velankar S (2008) Rheology of immiscible blends with particle-induced drop clusters. Rheol Acta 47:189–200

    Article  Google Scholar 

  • Thareja P, Moritz K, Velankar SS (2010) Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol Acta 49:285–298

    Article  Google Scholar 

  • Vandebril S, Vermant J, Moldenaers P (2010) Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology. Soft Matter 6:3353–3362

    Article  Google Scholar 

  • Vermant J, Van Puyvelde P, Moldenaers P, Mewis J, Fuller GG (1998) Anisotropy and orientation of the microstructure in viscous emulsions during shear flow. Langmuir 14:1612– 1617

    Article  Google Scholar 

  • Vermant J, Cioccolo G, Nair KG, Moldenaers P (2004) Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta 43:529–538

    Article  Google Scholar 

  • Vermant J, Vandebril S, Dewitte C, Moldenaers P (2008) Particle-stabilized polymer blends. Rheol Acta 47:835–839

    Article  Google Scholar 

  • Vignati E, Piazza R (2003) Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19:6650–6656

    Article  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–631

    Article  Google Scholar 

  • Wagner M, Wolf BA (1993) Interfacial tension between poly (isobutylene) and poly(dimethylsiloxane): influence of chain length, temperature, and solvents. Macromolecules 26:6498– 6502

    Article  Google Scholar 

  • Xu H, Lask M, Kirkwood J, Fuller GG (2007) Particle bridging between oil and water interfaces. Langmuir 4:4837–4841

    Article  Google Scholar 

  • Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H, Masuda T (1998) Observation of deformation and recovery of poly (isobutylene) droplet in a poly(isobutylene)/poly(dimethylsiloxane) blend after application of step shear strain. J Rheol 42:567– 580

    Article  Google Scholar 

  • Yeganeh JK, Goharpey F, Foudazi R (2010) Rheology and morphology of dynamically asymmetric LCST blends: polystyrene/poly (vinyl methyl ether). Macromolecules 43:8670–8685

    Article  Google Scholar 

  • Yeganeh JK, Goharpey F, Foudazi R (2012) Can only rheology be used to determine the phase separation mechanism in dynamically asymmetric polymer blends (PS/PVME)?RSC Advances 2:8116–8127

    Article  Google Scholar 

  • Zhang Z, Glotzer SC (2004) Morphology and rheology of ternary fluid–fluid–solid systems. Nano Lett 4:1407–1413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Goharpey or Reza Foudazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghimi, E., Goharpey, F. & Foudazi, R. Role of droplet bridging on the stability of particle-containing immiscible polymer blends. Rheol Acta 53, 165–180 (2014). https://doi.org/10.1007/s00397-013-0752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0752-0

Keywords

Navigation