Skip to main content
Log in

Structure–property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Structure–property relationship in typical polypropylene/polycarbonate/poly[styrene-b-(ethylene-co-butylene)-b-styrene] (PP/PC/SEBS) ternary blends containing maleated SEBS (SEBS-g-MAH) was investigated. Three grades of PC with different melt viscosities were used, and changes in blend morphology from PC/SEBS core–shell particles partially surrounded by SEBS-g-MAH to inverse SEBS/PC core–shell particles in PP matrix were observed upon varying the viscosity ratio of PC to SEBS. It was found that the viscosity ratio completely controls the size of the core–shell droplets and governs the type, population, and shape of the dispersed domains, as evidenced by rheological, mechanical, and thermomechanical behavioral assessments. Dynamic mechanical analysis of samples with common (PC–SEBS) and inverse (SEBS–PC) core–shell particles revealed that they show completely different behaviors: blends containing PC–SEBS presented a higher storage and loss modulus, while blends containing SEBS–PC exhibited a lower β-transition temperature. Moreover, ternary blends with PC cores showed the highest Young’s modulus values and the lowest impact strength, due to the different fracture modes of the blends containing PC–SEBS and SEPS–PC core–shell droplets, which present debonding and shell-fracture mechanisms, respectively. Morphological observations of blends with high-molecular-weight PC demonstrated the presence of detached droplets and rods of PC in the PP matrix, along with composite core–shell and rod-like particles. Micrographs of the fracture surfaces confirmed the proposed mechanisms, given the presence of stretched (debonded) PC (SEBS) cores encapsulated by SEBS (PC), which require more (less) energy to achieve fracture. The correlation between the mechanical and morphological properties proves that decreasing core diameter and shell thickness has positive effects on the impact strength but decreases the Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sionkowska A (2011) Prog Polym Sci 36:1254

    Article  CAS  Google Scholar 

  2. Yu L, Dean K, Li L (2006) Progr Polym Sci 31:576

  3. Manson JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York

  4. Robeson LM (1984) Polym Eng Sci 24:587

    Article  CAS  Google Scholar 

  5. Barlow JW, Paul DR (1981) Polym Eng Sci 21:985

    Article  CAS  Google Scholar 

  6. Paul DR, Newman S (1978) Polymer blends, volume 1. Academic, New York

  7. Hemmati F, Garmabi H, Modarress H (2013) Exp Polym Lett 7:996

    Article  CAS  Google Scholar 

  8. Brannock GR, Paul DR (1990) Macromolecules 23:5240

    Article  CAS  Google Scholar 

  9. Mester Z, Lynd NA, Fredrickson GH (2013) Soft Matter 9:11288

  10. Khalili R, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) Macro Mater Eng 299:1197

    Article  CAS  Google Scholar 

  11. Moini Jazani O, Arefazar A, Jafari SH, Peymanfar MR, Saeb MR, Talaei A (2013) Polym Plast Tech Eng 52:206

    Article  Google Scholar 

  12. Favis BD (1990) J Appl Polym Sci 39:285–300

    Article  CAS  Google Scholar 

  13. Li J, Ma PL, Favis BD (2002) Macromolecules 35:2005

    Article  CAS  Google Scholar 

  14. Liang H, Favis BD, Yu YS, Eisenberg A (1999) Macromolecules 32:1637

    Article  CAS  Google Scholar 

  15. Hong X, Nie G, Lin Z, Rong J (2012) Polym Plast Tech Eng 51:971

    Article  CAS  Google Scholar 

  16. Mazidi MM, Razavi Aghjeh MK, Khonakdar HA, Reuter U (2016) RSC Adv 6:1508

    Article  CAS  Google Scholar 

  17. Mekhilef N, Favis BD, Carreau PJ (1997) J Appl Polym Sci 35:293

    Article  CAS  Google Scholar 

  18. Moini Jazani O, Arefazar A, Saeb MR, Ghaemi A (2010) J Appl Polym Sci 116:2312

    Google Scholar 

  19. Saeb MR, Khonakdar HA, Razban M, Jafari SH, Garmabi H, Wagenknecht U (2012) Macro Chem Phys 213:1791

    Article  CAS  Google Scholar 

  20. Moini Jazani O, Arefazar A, Jafari SH, Saeb MR (2011) J Polym Eng 31:237

    Google Scholar 

  21. Sarvestani MRY, Arefazar A, Moini Jazani O, Saeb MR (2014) J Vinyl Add Tech 21:245

    Article  Google Scholar 

  22. Moini Jazani O, Arefazar A, Peymanfar MR, Saeb MR, Talaei A (2013) Polym Plast Tech Eng 52:1295

    Article  Google Scholar 

  23. Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49:599

    Article  CAS  Google Scholar 

  24. Rastin H, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) J Polym Res 21:352

    Article  Google Scholar 

  25. Saeb MR, Khonakdar HA, Moghri M, Razban M, Moini Jazani O, Alorizi AE (2014) Polym Plast Tech Eng 53:1142

    Article  CAS  Google Scholar 

  26. Rastin H, Jafari SH, Saeb MR, Khonakdar HA, Wagenknecht U, Heinrich G (2014) Eur Polym J 53:1

    Article  CAS  Google Scholar 

  27. Virgilio N, Desjardins P, L’Espérance G, Favis BD (2009) Macromolecules 42:7518

    Article  CAS  Google Scholar 

  28. Ravati S, Favis BD (2010) Polymer 51:4547

    Article  CAS  Google Scholar 

  29. Saeb MR, Khonakdar HA, Jafari SH, Rastin H, Wagenknechtd U, Heinrich G (2015) Polym Plast Tech Eng 54:223

    Article  CAS  Google Scholar 

  30. Rastin H, Saeb MR, Jafari SH, Khonakdar HA, Kritzschmar B, Wagenknecht U (2014) Macro Mater Eng 300:86

    Article  Google Scholar 

  31. Reignier J, Favis BD, Heuzey MC (2003) Polymer 44:49

    Article  CAS  Google Scholar 

  32. Dou R, Shen C, Yin B, Yang M, Xie B (2015) RSC Adv 5:14592

    Article  CAS  Google Scholar 

  33. Shen C, Zhou Y, Dou R, Wang W, Yin B, Yang M (2015) Polymer 56:395

    Article  CAS  Google Scholar 

  34. Tchomakov KP, Favis BD, Huneault MA, Champagne MF, Tofan F (2004) Polym Eng Sci 44:749–759

    Article  CAS  Google Scholar 

  35. Zhang J, Ravati S, Virgilio N, Favis BD (2007) Macromolecules 40:8817

    Article  CAS  Google Scholar 

  36. Reignier J, Favis BD (2003) Polymer 44:5061

    Article  CAS  Google Scholar 

  37. Tchomakov KP, Favis BD, Huneault MA, Champagne MF, Tofan F (2005) Cana J Chem Eng 83:300

    Article  CAS  Google Scholar 

  38. Freitas CA, Valera TS, Souza AMC, Demarquette NR (2007) Macro Symp 247:260

    Article  Google Scholar 

  39. Zhou Y, Yin B, Li L, Yang M, Feng J (2012) Polym Plast Tech Eng 51:983

    Article  CAS  Google Scholar 

  40. Sathe SN, Devi S, Srinivas GS, Rao K, Rao V (1996) J Appl Polym Sci 61:97

    Article  CAS  Google Scholar 

  41. Landry JT, Yang H, Machell JS (1991) Polymer 32:44

    Article  CAS  Google Scholar 

  42. Luzinov I, Pagnoulle C, Jérôme R (2000) Polymer 41:7099

    Article  CAS  Google Scholar 

  43. Dou R, Li S, Shao Y, Yin B, Yang M (2016) RSC Adv 6:439

    Article  CAS  Google Scholar 

  44. Reignier J, Favis BD (2000) Macromolecules 33:6998

    Article  CAS  Google Scholar 

  45. Krache R, Benachour D, Pötschke P (2004) J Appl Polym Sci 94:1976

    Article  CAS  Google Scholar 

  46. Sabetzadeh M, Bagheri R, Masoomi M (2015) Carbohy Polym 119:126

    Article  CAS  Google Scholar 

  47. Mittal V, Akhtar T, Luckachan G, Matsko N (2015) Coll Polym Sci 293:573

    Article  CAS  Google Scholar 

  48. Mazidi MM, Razavi Aghjeh MK (2015) RSC Adv 5:47183

    Article  Google Scholar 

  49. Horiuchi S, Matchariyakul N, Yase K, Kitano T (1997) Polymer 38:59

    Article  CAS  Google Scholar 

  50. Wilkinson AN, Clemens ML, Harding VM (2004) Polymer 45:5239

    Article  CAS  Google Scholar 

  51. Azizi A, Arefazar A, Moini Jazani O (2013) Polym Plast Tech Eng 52:1595

    Article  CAS  Google Scholar 

  52. Luzinov I, Xi K, Pagnoulle C, Huynh-Ba G, Jérôme R (1999) Polymer 40:2511

    Article  CAS  Google Scholar 

  53. Hemmati M, Nazokdast H, Panahi HS (2001) J Appl Polym Sci 82:1129

    Article  CAS  Google Scholar 

  54. Horiuchi S, Matchariyakul N, Yase K, Kitano T (1996) Polymer 37:3065

    Article  CAS  Google Scholar 

  55. Horiuchi S, Matchariyakul N, Yase K, Kitano T (1997) Macromolecules 30:3664

    Article  CAS  Google Scholar 

  56. Horiuchi S, Matchariyakul N, Yase K, Kitano T (1997) Polymer 38:6317

    Article  CAS  Google Scholar 

  57. Garhwal A, Maiti SN (2015) Polym Bull 25:1

    Google Scholar 

  58. Qiao X, Lu X, Gong X, Yang T, Sun K, Chen X (2015) Polym Test 47:51

    Article  CAS  Google Scholar 

  59. Chen F, Shangguan Y, Jiang Y, Qiu B, Luo G, Zheng Q (2015) Polymer 65:81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omid Moini Jazani or Mohammad Reza Saeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazani, O.M., Goodarzi, V., Hemmati, F. et al. Structure–property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio. J Polym Res 23, 231 (2016). https://doi.org/10.1007/s10965-016-1116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1116-0

Keywords

Navigation