Skip to main content
Log in

Rheological properties of suspensions of the green microalga Chlorella vulgaris at various volume fractions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A systematic study of the rheological properties of solutions of non-motile microalgae (Chlorella vulgaris CCAP 211-19) in a wide range of volume fractions is presented. As the volume fraction is gradually increased, several rheological regimes are observed. At low volume fractions (but yet beyond the Einstein diluted limit), the suspensions display a Newtonian rheological behaviour and the volume fraction dependence of the viscosity can be well described by the Quemada model (Quemada, Eur Phys J Appl Phys 1:119–127, 1997). For intermediate values of the volume fraction, a shear thinning behaviour is observed and the volume fraction dependence of the viscosity can be described by the Simha model (Simha, J Appl Phys 23:1020–1024, 1952). For the largest values of the volume fraction investigated, an apparent yield stress behaviour is observed. Increasing and decreasing stress ramps within this range of volume fractions indicate a thixotropic behaviour as well. The rheological behaviour observed within the high concentration regime bears similarities with the measurements performed by Heymann and Aksel (Phys Rev E 75:021505, 2007) on polymethyl methacrylate suspensions: irreversible flow behaviour (upon increasing/decreasing stresses) and dependence of the flow curve on the characteristic time of forcing (the averaging time per stress values). All these findings indicate a behaviour of the microalgae suspensions similar to that of suspensions of rigid particles. A deeper insight into the physical mechanisms underlying the shear thinning and the apparent yield stress regime is obtained by an in situ analysis of the microscopic flow of the suspension under shear. The shear thinning regime is associated to the formation of cell aggregates (flocs). Based on the Voronoi analysis of the correlation between the cell distribution and cell sizes, we suggest that the repulsive electrostatic interactions are responsible for this microscale organisation. The apparent yield stress regime originates in the formation of large-scale cell aggregates which behave as rigid plugs leading to a maximally random jammed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We note that this regime is yet beyond the Einstein’s ultra-dilute limit which was of no particular interest to the present study.

  2. Note that this strongly inhomogeneous flow field significantly departs from the analytical solution of a cone–plate rheometric flow which allows the accurate conversion of the measured torque (T) and angular speeds (\(\Omega \)) into stresses (\(\tau \)) and rates of shear (\(\dot {\gamma }\)).

  3. Note that if one takes into account the measured average cell radius and its standard deviation, one obtains \(t_{\mathrm {br}} \in \left [16.4, 65.7 \right ]\) s (see Fig. 1 and the discussion in Section “Preparation of the Chlorella microalgae suspensions”).

References

  • Adesanya VO, Vadillo DC, Mackley MR (2012) The rheological characterization of algae suspensions for the production of biofuels. J Rheol 56(4):925–939. doi:10.1122/1.4717494

    Article  CAS  Google Scholar 

  • Basu H, Vecchio A, Flider F, Orthoeter F (2001) Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc 78:665–675

    Article  CAS  Google Scholar 

  • Becker W (2007) Microalgae in human and animal nutrition. Blackwell, Oxford

    Google Scholar 

  • Buscall R (2010) Letter to the editor: wall slip in dispersion rheometry. J Rheol 54(6):1177–1183. doi:10.1122/1.3495981

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506. doi:10.1021/bp060065r

    CAS  Google Scholar 

  • Cornet JF (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Eng Sci 65(2):985–998. doi:10.1016/j.ces.2009.09.052

    Article  CAS  Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplacstic systems. J Colloid Sci 20:417–437

    Article  CAS  Google Scholar 

  • de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications. Springer, Berlin

    Google Scholar 

  • de Kruif CG, van Iersel EMF, Vrij A, Russel WB (1985) Hard sphere colloidal dispersions: viscosity as a function of shear rate and volume fraction. J Chem Phys 83(9):4717–4725

    Article  Google Scholar 

  • Dibble CJ, Kogan M, Solomon MJ (2006) Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys Rev E 74:041403. doi:10.1103/PhysRevE.74.041403

    Article  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Harris E (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic, San Diego

    Google Scholar 

  • Herschel WH, Bulkley R (1926) Konsistenzmessungen von gummi-benzollösungen. Kolloid Z 39:291–300

    Article  Google Scholar 

  • Heymann L, Aksel N (2007) Transition pathways between solid and liquid state in suspensions. Phys Rev E 75:021505

    Article  Google Scholar 

  • Ikeda A, Berthier L, Sollich P (2012) Unified study of glass and jamming rheology in soft particle systems. Phys Rev Lett 109:018301. doi:10.1103/PhysRevLett.109.018301

    Article  Google Scholar 

  • Jaishankar A, Sharma V, McKinley GH (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7:7623–7634. doi:10.1039/C1SM05399J

    Article  CAS  Google Scholar 

  • Kapaun E, Reisser W (1995) A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta 197:577–582

    Article  CAS  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137

    Article  CAS  Google Scholar 

  • Kumar H, Yadava P, Gaur J (1981) Electrical flocculation of the unicellular green alga Chlorella vulgaris Beijerinck. Aquat Bot 11(0):187–195. doi:10.1016/0304-3770(81)90059-0

    Article  CAS  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285. doi:10.1016/j.copbio.2009.04.004

    Article  CAS  Google Scholar 

  • Liu AJ, Nigel SR (1998) Nonlinear dynamics: jamming is not just cool any more. Nature (London) 396:21

    Article  CAS  Google Scholar 

  • Malkin AY, Masalova I, Slatter P, Wilson K (2004) Effect of droplet size on the rheological properties of highly-concentrated w/o emulsions. Rheol Acta 43:584–591

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Mouget JL, Tremblin G (2002) Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Renew Sustain Energy Rev 74:219–231

    CAS  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc A 466:1201–1228

    Article  CAS  Google Scholar 

  • Northcote HD, Goulding JK (1958) The chemical composition and structure of the cell wall of Chlorella pyeroidosa. Biochem J 70(3):391–397

    CAS  Google Scholar 

  • Pandey A, Larroche C, Ricke SC, Dussap C (2011) Biofuels: alternative feedstocks and conversion processes, chap 19. Academic, Burlington

    Google Scholar 

  • Pottier L (2005) Modélisation de photobioréacteurs pour la valorisation des microalgues. PhD thesis, University of Nantes

  • Putz AMV, Burghelea TI (2009) The solid–fluid transition in a yield stress shear thinning physical gel. Rheol Acta 48(6):673–689

    Article  CAS  Google Scholar 

  • Quemada D (1997) Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. Eur Phys J Appl Phys 1:119–127

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide (experimental fluid mechanics), 2nd edn. Springer, New York

    Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. In: Ang PO, Dumont HJ (eds) Asian pacific phycology in the 21st century: prospects and challenges, developments in hydrobiology, vol 173. Springer, Netherlands, pp 33–37

    Chapter  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35(4):291–311. doi:10.1002/er.1695

    Article  Google Scholar 

  • Scarano F, Rhiethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060. doi:10.1007/s003480070007

    Article  Google Scholar 

  • Schmidt M, Münstedt H (2002) Reological behaviour of concentrated monodisperse suspensions as a function of preshear conditions and temperature: an experimental study. Rheol Acta 41:193–204

    Article  CAS  Google Scholar 

  • Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9:445–450

    Article  CAS  Google Scholar 

  • Simha R (1952) A treatment of the viscosity of concentrated suspensions. J Appl Phys 23:1020–1024

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87

    Article  CAS  Google Scholar 

  • Takeda H (1988) Classification of chlorella strains by means of the sugar components of the cell wall. Biochem Syst Ecol 16(4):367–371. doi:10.1016/0305-1978(88)90027-0

    Article  CAS  Google Scholar 

  • Torquato S, Truskett TM, Debenedetti PG (2000) Is random close packing of spheres well defined? Phys Rev Lett 84:2064–2067. doi:10.1103/PhysRevLett.84.2064

    Article  CAS  Google Scholar 

  • Tropea C, Yarin AL, Foss JS (2007) Handbook of experimental fluid dynamics. Springer, Berlin

    Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028. doi:10.1016/j.biortech.2007.01.046

    Article  CAS  Google Scholar 

  • Wagner NJ, Mewis J (2011) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wileman A, Ozkan A, Berberoglu H (2011) Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresour Technol 104:432–439. doi:10.1016/j.biortech.2011.11.027

    Article  Google Scholar 

  • Wu ZY, Shi XM (2008) Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a fermentor. J Appl Phycol 20:279–282

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the Pôle Émergent pour la Recherche Ligèrienne en Énergie (PERLE2) program funded by the Pays de la Loire District, France. We gratefully acknowledge the technical support of Dr. Philippe Sierro and Mr. Etienne Roussel from Thermo Fisher Scientific, Karlsruhe, Germany for the calibration of the nano-torque module installed on the MARS III rheometer and for the optimisation of the RheoScope module. T. B. gratefully acknowledges the enlightening discussions with Miguel Moyers-Gonzalez. A. S. , J. P. and J. L. are grateful to M. Frappart for providing a large quantity of algae suspensions and to D. Grizeau for his precious insights on the algae structure. Last but not least, we are particularly indebted to the anonymous referees for their enlightening comments, remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor I. Burghelea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souliès, A., Pruvost, J., Legrand, J. et al. Rheological properties of suspensions of the green microalga Chlorella vulgaris at various volume fractions. Rheol Acta 52, 589–605 (2013). https://doi.org/10.1007/s00397-013-0700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0700-z

Keywords

Navigation