Skip to main content
Log in

Fractures in complex fluids: the case of transient networks

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We present a comprehensive review of the current state of fracture phenomena in transient networks, a wide class of viscoelastic fluids. We will first define what is a fracture in a complex fluid and recall the main structural and rheological properties of transient networks. Secondly, we review experimental reports on fractures of transient networks in several configurations: shear-induced fractures, fractures in Hele–Shaw cells, and fracture in extensional geometries (filament-stretching rheometry and pendant drop experiments), including fracture propagation. The tentative extension of the concepts of brittleness and ductility to the fracture mechanisms in transient networks is also discussed. Finally, the different and apparently contradictory theoretical approaches developed to interpret fracture nucleation will be addressed and confronted to experimental results. Rationalized criteria to discriminate the relevance of these different models will be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Ahn K, Osaki K (1995) Mechanism of shear thickening investigated by a transient network model. j Non-Newton Fluid Mech 56 :267.

    Article  CAS  Google Scholar 

  • Anna S, McKinley G (2008) Effect of a controlled pre-deformation history on extensional viscosity of dilute polymer solutions. Rheol Acta 47:841–859.

    Article  CAS  Google Scholar 

  • Anna S, McKinley G, DA N , Sridhar T, Muller J SJ ANS Huang , James D (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45:83–114.

    Article  CAS  Google Scholar 

  • Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) The rheology of solutions of associating polymers:comparison of experimental behavior with transient network theory. J Rheol 37:695.

    Article  CAS  Google Scholar 

  • Appell J, Porte G, Rawiso M (1998) Interactions between nonionic surfactant micelles introduced by a telechelic polymer. A small angle neutron scattering study. Langmuir 14:4409.

    Article  CAS  Google Scholar 

  • BaggerJorgensen H, Coppola L, Thuresson K, Olsson U, Mortensen K (1997) Phase behavior, microstructure, and dynamics in a nonionic microemulsion on addition of hydrophobically end-capped poly(ethylene oxide). Langmuir 13:4204.

    Article  Google Scholar 

  • Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129.

    Article  Google Scholar 

  • Baumberger T, Ronsin O (2009) From thermally activated to viscosity controlled fracture of biopolymer hydrogels. J Chem Phys 130:061,102.

    Article  CAS  Google Scholar 

  • Baumberger T, Ronsin O (2010a) A convective instability mechanism for quasistatic crack branching in a hydrogel. Eur Phys J E 31:51.

    Article  CAS  Google Scholar 

  • Baumberger T, Ronsin O (2010b) Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels. Biomacromolecules 11:1571.

    Article  CAS  Google Scholar 

  • Baumberger T, Caroli C, Martina D (2006a) Fracture of a biopolymer gel as a viscoplastic disentanglement process. Eur Phys J E 21:81.

    Article  CAS  Google Scholar 

  • Baumberger T, Caroli C, Martina D (2006b) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552.

    Article  CAS  Google Scholar 

  • Bensimon D, Kadanoff LP, Liang S, Shraiman BI, Tang C (1986) Viscous flows in two dimensions. Rev Modern Phys 58:958.

    Article  Google Scholar 

  • Berret JF, Serero Y (2001) Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys Rev Lett 87:048,303.

    Article  CAS  Google Scholar 

  • Berret JF, Calvet D, Collet A, Viguier M (1997) Fluorocarbon associative polymers. Curr Opin Colloid Interface Sci 2:424.

    Article  Google Scholar 

  • Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK (2010) Shear banding and flow-concentration coupling in colloidal glasses. Phys Rev Lett 105:268,301.

    Article  CAS  Google Scholar 

  • Bhardwaj A, Miller E, Rothstein JP (2007) Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. J Rheol 51:693.

    Article  CAS  Google Scholar 

  • Bonn D, Kellay H, Ben-Djemiaa K, Meunier J (1998) Delayed fracture of an inhomogeneous soft solid. Science 280:265.

    Article  Google Scholar 

  • Boukany PE, Wang SQ (2007) Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution:from wall slip, bulk disentanglement to chain scission. Macromolecules 41:1455.

    Article  CAS  Google Scholar 

  • Boukany PE, Wang SQ, Wang X (2009) Step shear of entangled linear polymer melts:new experimental evidence for elastic yielding. Macromolecules 42:6261.

    Article  CAS  Google Scholar 

  • Brenner S (1962) Mechanical behavior of sapphire whiskers at elevated temperatures. J Appl Phys 33:33.

    Article  CAS  Google Scholar 

  • van den Brule, BHAA, Hoogerbrugge PJ (2000) Brownian dynamics simulations of reversible polymeric networks. j Non-Newton Fluid Mech 60:303.

    Article  Google Scholar 

  • Buchel A, Sethna J (1997) Statistical mechanics of cracks:fluctuations, breakdown, and asymptotics of elastic theory. Phys Rev E 55:7669–7690.

    Article  CAS  Google Scholar 

  • Buehler MJ (2010) Colloqium:failure of molecules, bones and the earth itself. Rev Mod Phys 82:1459.

    Article  Google Scholar 

  • Chassenieux C, Nicolai T, Benyahia L (2011) Rheology of associative polymer solutions. Curr Opin Colloid Interface Sci 16:18.

    Article  CAS  Google Scholar 

  • Chaudhury MK (1999) Rate-dependent fracture at adhesive interface. J Phys Chem B 103:6562.

    Article  CAS  Google Scholar 

  • Ciliberto S, Guarino A, Scorretti R (2001) The effect of disorder on the fracture nucleation process. Physica D 158:83–104.

    Article  Google Scholar 

  • Coleman B (1958) Statistics and time dependence of mechanical breakdown in fibers. J Appl Physi 29:968–983.

    Article  Google Scholar 

  • Considère A (1885) Mémoire sur l’emploi du fer et de l’acier dans les constructions. Ann Ponts Chaussées 9:574.

    Google Scholar 

  • Cordier P, Tournhilac F, Soulié-Zakovich C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:0669.

    Article  CAS  Google Scholar 

  • Divoux T, Tamarii D, Barentin C, Manneville S (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104:208,301.

    Article  CAS  Google Scholar 

  • Dreiss C (2007) Wormlike micelles:where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970.

    Article  CAS  Google Scholar 

  • Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865.

    Article  CAS  Google Scholar 

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036,601.

    Article  Google Scholar 

  • Erk K, Martin J, Hu Y , Shull K (2012) Extreme strain localization and sliding friction in physically associating polymer gels. Langmuir 28(9):4472–4478.

    Article  CAS  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541.

    Article  CAS  Google Scholar 

  • Eyring H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4(4):283–291.

    Article  CAS  Google Scholar 

  • Feder HJ, Feder J (1991) Self-organized criticality in a stick-slip process. Phys Rev Lett 66:2669.

    Article  Google Scholar 

  • Fielding SM (2007) Complex dynamics of shear banded flows. Soft Matter 3:1262.

    Article  CAS  Google Scholar 

  • Fielding SM (2011) Criterion for extensional necking instability in polymeric fluids. Phys Rev Lett 107:258,301.

    Article  CAS  Google Scholar 

  • Filali M, Aznard R, Svensson M, Porte G, Appell J (1999) Swollen micelles plus hydrophobically modified hydrosoluble polymers in aqueous solutions:decoration versus bridging. A small angle neutron scattering study. J Phys Chem B 103:7293.

    Article  CAS  Google Scholar 

  • Filali M, Ouazzani M, Michel E, Aznard R, Porte G, Appell J (2001) Robust phase behavior of model transient networks. J Phys Chem B 105:10,528.

    Article  CAS  Google Scholar 

  • de Gennes PG (1996) Soft adhesives. Langmuir 12:4497– 4500.

    Article  CAS  Google Scholar 

  • de Gennes PG (2007) Melt fracture of entangled polymers. Eur Phys J E 23(1):3–5.

    Article  CAS  Google Scholar 

  • Gladden TR, Belmonte A (2007) Motion of a viscoelastic micellar fluid around a cylinder:flow and fracture. Phys Rev Lett 98:224,501.

    Article  CAS  Google Scholar 

  • Golubovic L, Feng S (1991) Rate of microcrack nucleation. Phys Rev A 43:5223–5227.

    Article  Google Scholar 

  • Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymer media. J Chem Phys 14:80.

    Article  CAS  Google Scholar 

  • Greenwood J, Johnson K (1981) The mechanics of adhesion of visocelastic solids. Philos Mag A 43:697.

    Article  CAS  Google Scholar 

  • Greffier O, kahwaji AA, Rouch J, Kellay H (1998) Observation of a finite-time singularity in needle propagation in Hele-Shaw cells. Phys Rev Lett 91:3860.

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London A221:163–198.

    Google Scholar 

  • Guarino A, Ciliberto S, Garcimartin A (1999) Failure time and microcrack nucleation. Europhys Lett 47:456–461.

    Article  CAS  Google Scholar 

  • Guarino A, Ciliberto S, Garcimartin A, Zei M, Scorretti R (2002) Failure time and critical behaviour of fracture precursors in heterogeneous materials. Eur Phys J B 26:141–151.

    CAS  Google Scholar 

  • Hanggi P, Talkner P, Borkovec M (1990) Reaction-rate theory—50 years after kramers. Rev Mod Phys 62(2):251–341.

    Article  Google Scholar 

  • Helgeson ME, Moran SE, Han HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11:344–352.

    Article  CAS  Google Scholar 

  • Hernandez-Cifre G, Barenbrug T, Schieber JD, van den Brule, BAA (2003) Brownian dynamics simulation of reversible polymer networks under shear using a non-interacting dumbbell model. j Non-Newton Fluid Mech 113:73.

    Article  CAS  Google Scholar 

  • Hough L, Ou-Yang H (2006) Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions:relaxation and structure. Phys Rev E 73:031,802.

    Article  CAS  Google Scholar 

  • Hui CY, Jagota A, Bennison SJ, Londono JD (2003) Crack blunting and the strength of soft elastic solids. Proc Royal Soc Lond A 459:1489–1516.

    Article  Google Scholar 

  • Hutton JF (1963) Fractures of liquids in shear. Nature 200:646.

    Article  Google Scholar 

  • Ide Y, White J (1976) The spinnability of polymer fluid filaments. J Appl Polym Sci 20:2511.

    Article  CAS  Google Scholar 

  • Ide Y, White J (1977) Investigation of failure during elongational flow of polymer melts. J Non-Newton FLuid Mech 2:281–298.

    Article  CAS  Google Scholar 

  • Ide Y, White J (1978) Experimental study of elongational flow and failure of polymer melts. J Appl Polym Sci 22:1061.

    Article  CAS  Google Scholar 

  • Ignés-Mullol J, Zhao H, Maher JV (1995) Velocity fluctuations of fracture like disruptions of associating polymer solutions. Phys Rev E 51:1338.

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364.

    Google Scholar 

  • Joanny J, Leibler L, de Gennes P (1979) Effects of polymer solutions on colloid stability. J Polym Sci Polym Phys Ed 17(6):1073–1084.

    Article  CAS  Google Scholar 

  • Joshi YM, Denn MM (2004) Rupture of entangled polymeric liquids in elongational flow with dissipation. J Rheol 48:591.

    Article  CAS  Google Scholar 

  • Kausch H (1978) Polymer fracture. Springer, Berlin

    Google Scholar 

  • Kim B, Mooney D (1998) Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res 41:322.

    Article  CAS  Google Scholar 

  • Kim J, Kim S, Kim K, Jin Y, Hong S, Hwang S, Cho B, Shin D, Im S (2004) Applications of telechelic polymers as compatibilizers and stabilizers in polymer blends and inorganic/organic nanohybrids. Polymer 45:9071.

    Article  CAS  Google Scholar 

  • Kun F, Zapperi S, Herrmann H (2000) Dammage in fiber bundle models. Eur Phys J B 17:269–279.

    Article  CAS  Google Scholar 

  • Larson RG (1999) Structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee J, Gustin J, Chen T, Payne G, Raghavan S (2005) Vesicle? Biopolymer gels:networks of surfactant vesicles connected by associating biopolymers. Langmuir 21:26.

    Article  CAS  Google Scholar 

  • Lemaire E, Levitz P, Daccord G, van Damme H (1991) From viscous fingering to viscoelastic fracturing in colloidal fluids. Phys Rev Lett 67:2009.

    Article  CAS  Google Scholar 

  • Livne A, Cohen G, Finberg J (2005) Universality and hysteretic dynamics in rapid fracture. Phys Rev Lett 94:224,301.

    Article  CAS  Google Scholar 

  • Livne A, Ben-David O, Fineberg J (2007) Oscillations in rapid fracture. Phys Rev Lett 98:124,301.

    Article  CAS  Google Scholar 

  • Lodge T, Taribajil R, Yoshida T, Hillmyer M (2007) Sans evidence for the cross-linking of wormlike micelles by a model hydrophobically modified polymer. Macromolecules 40:4728.

    Article  CAS  Google Scholar 

  • Ma S, Cooper S (2001) Shear thickening in aqueous solutions of hydrocarbon end-capped poly(ethylene oxide). Macromolecules 34(10):3294–3301.

    Article  CAS  Google Scholar 

  • Malkin AY, Petrie CJS (1997) Some conditions for rupture of polymeric liquids in extension. J Rheol 41:1.

    Article  CAS  Google Scholar 

  • Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301.

    Article  CAS  Google Scholar 

  • Marrucci G, Bhargava S, Cooper S (1993) Models of shear thickening behaviour in physically cross-linked networks. Macromolecules 26:6483.

    Article  CAS  Google Scholar 

  • McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375.

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in soft particle pastes. Phys Rev Lett 92:198,302.

    Article  CAS  Google Scholar 

  • Meng X, Russel W (2006) Rheology of telechelic associative polymers in aqueous solutions. J Rheol 50:1989.

    Google Scholar 

  • Mewis J, Kaffashi B, Vermant J, Butera R (2001) Determining relaxation modes in flowing associative polymers using superposition flows. Macromolecules 34:1376.

    Article  CAS  Google Scholar 

  • Michel E, Filali M, Aznar R, Porte G, Appell J (2000) Percolation in a model transient network:rheology and dynamic light scattering. Langmuir 16:8702.

    Article  CAS  Google Scholar 

  • Molino F, Appell J, Filalli M, Michel E, Porte G, Mora S, Sunyer S (2000) A transient network of telechelic polymers and microspheres:structure and rheology. J Phys Cond Matt 12:A491.

    Article  CAS  Google Scholar 

  • Mora S (2011) The kinetic approach to fracture in transient networks. Soft Matter 7:4908.

    Article  CAS  Google Scholar 

  • Mora S, Manna M (2009) Saffman-Taylor instability for generalized newtonian fluids. Phys Rev E 80:016,308.

    Article  CAS  Google Scholar 

  • Mora S, Manna M (2010) Saffman-Taylor instability of viscoelastic fluids:from viscous fingering to elastic fractures. Phys Rev E 81:026,305.

    Article  CAS  Google Scholar 

  • Mora S, Manna M (2012) From viscous fingering to elastic instabilities. j Non-Newton Fluid Mech 173-174:30–39.

    Article  CAS  Google Scholar 

  • Moreno Y, Gomez J, Pacheco A (1999) Self-organized criticality in a fibre-bundle-type model. Physica A 274:400–409.

    Article  Google Scholar 

  • Nakaya-Yaegashi K, Ramos L, Tabuteau H, Ligoure C (2008) Linear viscoelasticity of entangled wormlike micelles bridged by telechelic polymers:an experimental model for a double transient network. J Rheol 52:359.

    Article  CAS  Google Scholar 

  • Odenwald M, Eicke H, Meier W (1995) Transient networks by aba triblock copolymers and microemulsions:a rheological study. Macromolecules 28:5074.

    Article  Google Scholar 

  • Olmsted P (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283.

    Article  CAS  Google Scholar 

  • Olsson U, Börjesson J, Angelico R, Ceglie A, Palazzo G (2010) Slow dynamics of wormlike micelles. Soft Matter 6:1769–1777.

    Article  CAS  Google Scholar 

  • Otsubo B (1999) A nonlinear elastic model for shear thickening of suspensions flocculated by reversible bridging. Langmuir 15:1960.

    Article  CAS  Google Scholar 

  • Pauchard L, Meunier J (1993) Instantaneous and time-lag breaking of a 2-dimensional solid rod under a bending stress. Phys Rev Lett 70:3565–3568.

    Article  CAS  Google Scholar 

  • Pauchard L, Meunier J (1998) Experimental study of the breakage of a two-dimensional crystal. Phila Mag B 78:221–224.

    Article  CAS  Google Scholar 

  • Pellens L, Ahn K, Lee S, Mewis J (2004a) Evaluation of a transient network model for telechelic associative polymers. j Non-Newton Fluid Mech 12:87.

    Article  CAS  Google Scholar 

  • Pellens L, Gamez-Corrales R, Mewis J (2004b) General nonlinear rheological behavior of associative polymers. J Rheol 48:379.

    Article  CAS  Google Scholar 

  • Petrie CSJ (2009) Considère reconsidered:necking of polymeric liquids. Chem Eng Sci 64:4693.

    Article  CAS  Google Scholar 

  • Pomeau Y (1992) Brisure spontanée de cristaux bidimensionnels courbés. C R Acad Sci Ser 314:553.

    Google Scholar 

  • Pomeau Y (2002) Fundamental problems in brittle fracture:unstable cracks and delayed breaking. C R Mecanique 330:249–257.

    Article  Google Scholar 

  • Pradhan S, Hansen A, Chakrabarti B (2010) Failure processes in elastic fiber bundles. Rev Mod Phys 82:499–555.

    Article  Google Scholar 

  • Ramos L, Ligoure C (2007) Structure of a new type of transient network:entangled wormlike micelles bridged by telechelic polymers. Macromolecules 40:1248.

    Article  CAS  Google Scholar 

  • Ramos L, Laperrousaz A, Dieudonné P, Ligoure C (2011) Structural signature of a brittel-to-ductile transition in self-assembled networks. Phys Rev Lett 107:148,302.

    Google Scholar 

  • Renardy M (2004) Self similar breakup of non-newtonian fluid jets. In: (BindingDM, WaltersK, eds.) Rheology reviews. British Society of Rheology, Aberystwyth, p. 171

    Google Scholar 

  • Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386.

    Article  Google Scholar 

  • Rothstein JP (2003) Transient extensional rheology of wormlike micelle solutions. J Rheol 47:1127.

    Article  CAS  Google Scholar 

  • Santucci S, Vanel L, Guarino A, Scorretti R, Ciliberto S (2003) Thermal activation of rupture and slow crack growth in a model of homogeneous brittle materials. Europhys Lett 62:320–326.

    Article  CAS  Google Scholar 

  • Santucci S, Vanel L, Ciliberto S (2007) Slow crack growth:models and experiments. Eur Phys J Special Topics 146:341.

    Article  Google Scholar 

  • Saulnier F, Ondarçuhu T, Aradian A, Raphael E (2004) Adhesion between a viscoelastic material and a solid surface. Macromolecules 37:1067–1075.

    Article  CAS  Google Scholar 

  • Seitz M, Burghardt W, Faber K, Shull K (2006) Self-assembly and stress relaxation in acrylic triblock copolymer gels. Macromolecules 40:1218.

    Article  CAS  Google Scholar 

  • Seitz ME, Martina D, Baumberger T, Krishnan VR, Hui C, Shull K (2009) Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5:447.

    Article  CAS  Google Scholar 

  • Semenov A, Joanny J, Khokhlov A (1995) Associating polymers:equilibrium and linear viscoelasticity. Macromolecules 28:1066.

    Article  CAS  Google Scholar 

  • Serero Y, Jacobsen V, Berret JF (2000) Evidence of nonlinear chain stretching in the rheology of transient networks. Macromolecules 33:1841.

    Article  CAS  Google Scholar 

  • Skrzeszewska P, Sprakel J, de Wolf F, Fokkink R, Stuart MC, van der Gucht, J (2010) Fracture and self-healing in a well-defined self-assembled polymer network. Macromolecules 43:3542.

    Article  CAS  Google Scholar 

  • Skrzeszewska PJ, de Wolf AF, Werten MWT, Moers APH, Cohen Stuart MA, van der Gucht, J (2009) Physical gels of telechelic triblock copolymers with precisely defined junction multiplicity. Soft Matter 5:2057–2062.

    Article  CAS  Google Scholar 

  • Smolka LB, Belmonte A (2003) Drop pinch-off and filament dynamics of wormlike micellar fluids. j Non-Newton Fluid Mech 115:1.

    Article  CAS  Google Scholar 

  • Spenley NA, Cates ME, McLeish TCB (1993) Non linear rheology of wormlike micelles. Phys Rev Lett 71:939.

    Article  CAS  Google Scholar 

  • Sprakel J, Besseling NAM, Leermakers FAM, Cohen-Stuart MA (2007) Equilibrium capillary forces with atomic force microscopy. Phys Rev Lett 99:104,504.

    CAS  Google Scholar 

  • Sprakel J, Bartscherer E, Hoffmann G, Cohen Stuart MA, van der Gucht, J (2008) Dynamics of polymer bridge formation and disruption. Phys Rev E 78:040,802.

    Article  CAS  Google Scholar 

  • Sprakel J, Spruijt E, Cohen-Stuart MA, Michels MAJ, van der Gucht, J (2009a) Intermittent dynamics in transient polymer networks under shear:signs of self-organized criticality. Phys Rev E 79:056,306.

    Article  CAS  Google Scholar 

  • Sprakel J, Spruijt E, van der Gucht, J, Padding JT, Briels WJ (2009b) Failure-mode transition in transient polymer networks with particle-based simulations. Soft Matter 5:4748.

    Article  CAS  Google Scholar 

  • Sprakel J, Lindström S, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106:248,303.

    Article  CAS  Google Scholar 

  • Sutter M, Siepmann J, Hennink W, Jiskoot W (2007) Recombinant gelatin hydrogels for the sustained release of proteins. J Control Release 119:301.

    Article  CAS  Google Scholar 

  • Tabuteau H, Mora S, Ramos L, Porte G, Ligoure C (2008) Ductility versus brittleness in self-assembled transient networks. Prog Theor Phys Suppl 175:47.

    Article  CAS  Google Scholar 

  • Tabuteau H, Mora S, Porte G, Abkarian M, Ligoure C (2009a) Microscopic mechanisms of the brittleness of viscoelastic fluids. Phys Rev Lett 102:155,501.

    Article  CAS  Google Scholar 

  • Tabuteau H, Ramos L, Nakaya-Yaegashi K, Imai M, Ligoure C (2009b) Nonlinear rheology of surfactant wormlike micelles bridged by telechelic polymers. Langmuir 25:2467–2472.

    Article  CAS  Google Scholar 

  • Tabuteau H, Mora S, Ciccotti M, Hui CY, Ligoure C (2011) Propagation of a brittle fracture in a viscoelastic fluid. Soft Matter 7:9474.

    Article  CAS  Google Scholar 

  • Tam K, Jenkins R, Winnik M, Bassett D (1998) A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31(13):4149–4159.

    Article  CAS  Google Scholar 

  • Tanaka F, Edwards S (1992a) Viscoelastic properties of physically cross-linked networks—transient network theory. Macromolecules 25:1516–1523.

    Article  CAS  Google Scholar 

  • Tanaka F, Edwards S (1992b) Viscoelastic properties of physically cross-linked networks part 1. Nonlinear stationary viscoelasticity. J Non-Newton Fluid Mech 43:247–271.

    Article  CAS  Google Scholar 

  • Tanaka F, Edwards S (1992c) Viscoelastic properties of physically cross-linked networks:part 2. Dynamic mechanical moduli. J Non-Newton Fluid Mech 43:273–288.

    Article  CAS  Google Scholar 

  • Tanaka F, Edwards S (1992d) Viscoelastic properties of physically cross-linked networks:part 3. Time-dependent phenomena. J Non-Newton Fluid Mech 43:289–309.

    Article  CAS  Google Scholar 

  • Tanaka F, Edwards S (1992e) Viscoelastic properties of physically cross-linked networks-transient network theory. Macromolecules 25:1516.

    Article  CAS  Google Scholar 

  • Tanaka Y, Fukao K, Miyamoto Y (2000) Fracture energy of gels. Eur Phys J E 3:395.

    Article  CAS  Google Scholar 

  • Tirtaatmajda V, Jenkins R (1997) Superposition of oscillations on steady shear flow as technique for investigating the structure of associative polymers. Macromolecules 30:1426.

    Article  Google Scholar 

  • Tixier T, Tabuteau H, Carrière A, Ramos L, Ligoure C (2010) Transition from brittle to ductile rheological behavior by tuning the morphology of self-assembled networks. Soft Matter 6:2699.

    Article  CAS  Google Scholar 

  • Tripathi A, Tam KC, McInley GH (2006) Rheology and dynamics of associative polymers in shear and extension:theory and experiments. Macromolecules 39:1981.

    Article  CAS  Google Scholar 

  • Vaccaro A, Marrucci G (2000) A model for the nonlinear rheology of associating polymers. J Non-Newton Fluid Mech 92:261.

    Article  CAS  Google Scholar 

  • Vlad D, Ignés-Mullol J, Maher J (1999) Velocity-jump instabilities in Hele-Shaw flow of associating polymer solutions. Phys Rev E 60:4423.

    Article  CAS  Google Scholar 

  • Wang Y, Wang SQ (2010) Rupture in rapid uniaxial extension of linear entangled melts. Rheol Acta 49:1179.

    Article  CAS  Google Scholar 

  • Warriner H, Davidson P, Slack N, Schelhorn M, Eiselt M, Idziak P, Schmidt H, Safinya C (1997) Lamellar biogels comprising fluid membranes with a newly synthesized class of polyethylene glycol-surfactants. J Chem Phys 107:3707.

    Article  CAS  Google Scholar 

  • Werten M, Teles H, Moers A, Wolbert E, Sprakel J, Eggink G, de Wolf F (2009) Precision gels from collagen-inspired triblock copolymers. Biomacromolecules 10:1106.

    Article  CAS  Google Scholar 

  • Winnik M, Yekta A (1997) Associative polymers in solution. Curr Opin Colloid Interface Sci 2:424.

    Article  CAS  Google Scholar 

  • Xu B, Yekta A, Li L, Masoumi Z, Winnik M (1996) The functionality of associative polymer networks:the association behavior of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in aqueous solution. Colloids Surf A Physicochem Eng Asp 112:239.

    Article  CAS  Google Scholar 

  • Yamamoto M (1956) The visco-elastic properties of network structure. 1 general formalism. J Phys Soc Jpn 11:413.

    Article  Google Scholar 

  • Zhao H, Maher JV (1993) Associating-polymer effects in Hele-Shaw experiments. Phys Rev E 47:4278.

    Article  CAS  Google Scholar 

  • Zhurkov SN (1965) Kinetic concept of strength of solids. Int J Fract Mech 1:311.

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by ANR under contract no. ANR- 2010-BLAN-0402-1 (F2F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ligoure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligoure, C., Mora, S. Fractures in complex fluids: the case of transient networks. Rheol Acta 52, 91–114 (2013). https://doi.org/10.1007/s00397-012-0668-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0668-0

Keywords

Navigation