Skip to main content
Log in

Magnetorheology in an aging, yield stress matrix fluid

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Field-induced static and dynamic yield stresses are explored for magnetorheological (MR) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite® clay. Using a custom-built magnetorheometry fixture, the MR response is studied for magnetic field strengths up to 1 T and magnetic particle concentrations up to 30 v%. The yield stress of the matrix fluid, which serves to inhibit sedimentation of dispersed carbonyl iron magnetic microparticles, is found to have a negligible effect on the field-induced static yield stress for sufficient applied fields, and good agreement is observed between field-induced static and dynamic yield stresses for all but the lowest field strengths and particle concentrations. These results, which generally imply a dominance of inter-particle dipolar interactions over the matrix fluid yield stress, are analyzed by considering a dimensionless magnetic yield parameter that quantifies the balance of stresses on particles. By characterizing the applied magnetic field in terms of the average particle magnetization, a rheological master curve is generated for the field-induced static yield stress that indicates a concentration–magnetization superposition. The results presented herein will provide guidance to formulators of MR fluids and designers of MR devices who require a field-induced static yield stress and a dispersion that is essentially indefinitely stable to sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou B, Bonn D, Meunier J (2003) Nonlinear rheology of Laponite suspensions under an external drive. J Rheol 47(4):979–988

    Article  CAS  Google Scholar 

  • Bonn D, Denn MM (2009) Yield stress fluids slowly yield to analysis. Science 324(5933):1401–1402

    Article  CAS  Google Scholar 

  • Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J (1999) Laponite: what is the difference between a gel and a glass? Langmuir 15(22):7534–7536

    Article  CAS  Google Scholar 

  • Bonn D, Tanase S, Abou B, Tanaka H, Meunier J (2002) Laponite: aging and shear rejuvenation of a colloidal glass. Phys Rev Lett 89(1):015701

    Article  Google Scholar 

  • Bossis G, Lemaire E (1991) Yield stresses in magnetic suspensions. J Rheol 35(7):1345–1354

    Article  CAS  Google Scholar 

  • Bossis G, Lacis S, Meunier A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252:224–228

    Article  CAS  Google Scholar 

  • Carlson JD, Matthis W, Toscano JR (2001) Smart prosthetics based on magnetorheological fluids. In: Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, vol 4332. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham, pp 308–316

    Google Scholar 

  • Chhabra R (1993) Bubbles, drops, and particles in non-Newtonian fluids. CRC, Boca Raton

    Google Scholar 

  • Chin BD, Park JH, Kwon MH, Park OO (2001) Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol Acta 40(3):211–219

    Article  CAS  Google Scholar 

  • Cho MS, Choi HJ (2004) Magnetorheological characterization of polymer-iron composite suspensions. In: Kang S-G, Kobayashi T (eds) Designing, Processing and Properties of Advanced Engineering Materials, vol 449–452. Materials Science Forum. Trans Tech, Zurich-Uetikon, pp 1201–1204

    Google Scholar 

  • Cocard S, Tassin JF, Nicolai T (2000) Dynamical mechanical properties of gelling colloidal disks. J Rheol 44(3):585–594

    Article  CAS  Google Scholar 

  • de Vicente J, Lopez-Lopez MT, Gonzalez-Caballero F, Duran JDG (2003) Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J Rheol 47(5):1093–1109

    Article  Google Scholar 

  • de Vicente J, Vereda F, Segovia-Gutierrez JP, Morales MD, Hidalgo-Alvarez R (2010) Effect of particle shape in magnetorheology. J Rheol 54(6):1337–1362

    Article  Google Scholar 

  • de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011a) Magnetorheological fluids: a review. Soft Matter 7(7):3701–3710

    Article  Google Scholar 

  • de Vicente J, Ruiz-Lopez JA, Andablo-Reyes E, Segovia-Gutierrez JP, Hidalgo-Alvarez R (2011b) Squeeze flow magnetorheology. J Rheol 55(4):753–779

    Article  Google Scholar 

  • Deshmukh SS (2006) Development, characterization and applications of magnetorheological fluid based ‘smart’ materials on the macro-to-micro scale. Ph.D. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

  • Dyke SJ, Spencer BF, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5(5):565–575

    Article  Google Scholar 

  • Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloid Surface A 351(1–3):46–51

    Google Scholar 

  • Felt DW, Hagenbuchle M, Liu J, Richard J (1996) Rheology of a magnetorheological fluid. J Intell Mater Syst Struct 7(5):589–593

    Article  CAS  Google Scholar 

  • Fermigier M, Gast AP (1992) Structure evolution in a paramagnetic latex suspension. J Colloid Interface Sci 154(2):522–539

    Article  CAS  Google Scholar 

  • Fielding SM, Sollich P, Cates ME (2000) Aging and rheology in soft materials. J Rheol 44(2):323–369

    Article  CAS  Google Scholar 

  • Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheological fluids: models and measurements. Int J Mod Phys B 10(23–24):3293–3303

    Article  CAS  Google Scholar 

  • Goncalves FD, Koo J-H, Ahmadian M (2006) A review of the state of the art in magnetorheological fluid technologies—part I: MR fluid and MR fluid models. Shock Vib Digest 38(3):203–219

    Article  Google Scholar 

  • Jabbari-Farouji S, Tanaka H, Wegdam GH, Bonn D (2008) Multiple nonergodic disordered states in Laponite suspensions: a phase diagram. Phys Rev E 78(6):061405

    Article  CAS  Google Scholar 

  • Jolly MR, Bender JW, Carlson JD (1999) Properties and applications of commercial magnetorheological fluids. J Intell Mater Syst Struct 10(1):5–13

    Google Scholar 

  • Joshi YM, Reddy GRK (2008) Aging in a colloidal glass in creep flow: time-stress superposition. Phys Rev E 77(2):021501

    Article  Google Scholar 

  • Klingenberg DJ (2001) Magnetorheology: applications and challenges. AIChE J 47(2):246–249

    Article  CAS  Google Scholar 

  • Klingenberg DJ, Zukoski CF (1990) Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6(1):15–24

    Article  CAS  Google Scholar 

  • Klingenberg DJ, Ulicny JC, Golden MA (2007) Mason numbers for magnetorheology. J Rheol 51(5):883–893

    Article  CAS  Google Scholar 

  • Kordonski WI, Golini D (1999) Fundamentals of magnetorheological fluid utilization in high precision finishing. J Intell Mater Syst Struct 10(9):683–689

    Article  Google Scholar 

  • Kordonski W, Gorodkin S, Zhuravski N (2001) Static field stress in magnetorheological fluid. Int J Mod Phys B 15(6–7):1078–1084

    Article  Google Scholar 

  • Lemaire E, Meunier A, Bossis G, Liu J, Felt D, Bashtovoi V, Matoussevitch N (1995) Influence of the particle size on the rheology of magnetorheological fluids. J Rheol 39(5):1011–1020

    Article  CAS  Google Scholar 

  • Lim ST, Cho MS, Jang IB, Choi HJ (2004) Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J Magn Magn Mater 282:170–173

    Article  CAS  Google Scholar 

  • Lim ST, Choi HJ, Jhon MS (2005) Magnetorheological characterization of carbonyl iron–organoclay suspensions. IEEE Trans Magn 41(10):3745–3747

    Article  CAS  Google Scholar 

  • Liu J, Gardel ML, Kroy K, Frey E, Hoffman BD, Crocker JC, Bausch AR, Weitz DA (2006) Microrheology probes length scale dependent rheology. Phys Rev Lett 96(11):118104

    Article  CAS  Google Scholar 

  • Lopez-Lopez MT, de Vicente J, Bossis G, Gonzalez-Caballero F, Duran JDG (2005) Preparation of stable magnetorheological fluids based on extremely bimodal iron-magnetite suspensions. J Mater Res 20(4):874–881

    Article  CAS  Google Scholar 

  • Lopez-Lopez MT, Zugaldia A, Gonzalez-Caballero F, Duran JDG (2006) Sedimentation and redispersion phenomena in iron-based magnetorheological fluids. J Rheol 50(4):543–560

    Article  CAS  Google Scholar 

  • Martin JE, Anderson RA (1996) Chain model of electrorheology. J Chem Phys 104(12):4814–4827

    Article  CAS  Google Scholar 

  • Martin C, Pignon F, Piau J-M, Magnin A, Lindner P, Cabane B (2002) Dissociation of thixotropic clay gels. Phys Rev E 66(2):021401

    Article  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  Google Scholar 

  • Møller PCF, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Philos Trans R Soc A-Math Phys Eng Sci 367(1909):5139–5155

    Article  Google Scholar 

  • Mourchid A, Levitz P (1998) Long-term gelation of Laponite dispersions. Phys Rev E 57(5):R4887–R4890

    Article  Google Scholar 

  • Mourchid A, Delville A, Lambard J, LeColier E, Levitz P (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: equilibrium properties, structure, and rheology of Laponite suspensions. Langmuir 11(6):1942–1950

    Article  CAS  Google Scholar 

  • Negi AS, Osuji CO (2010) Time-resolved viscoelastic properties during structural arrest and aging of a colloidal glass. Phys Rev E 82(3):031404

    Article  Google Scholar 

  • Ngatu GT, Wereley NM, Karli JO, Bell RC (2008) Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires. Smart Mater Struct 17(4):8

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Article  Google Scholar 

  • Ocalan M (2011) Magnetorheological fluids for extreme environments: stronger, lighter, hotter. Ph.D. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

  • Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid. Mater Design 28(10):2658–2664

    Article  CAS  Google Scholar 

  • Park JH, Kwon MH, Park OO (2001) Rheological properties and stability of magnetorheological fluids using viscoelastic medium and nanoadditives. Korean J Chem Eng 18(5):580–585

    Article  CAS  Google Scholar 

  • Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6(21):5246–5253

    Article  CAS  Google Scholar 

  • Park BO, Park BJ, Hato MJ, Choi HJ (2011) Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field. Colloid Polym Sci 289(4):381–386

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mat Sci Eng R 17(2):57–103

    Article  Google Scholar 

  • Petit L, Barentin C, Colombani J, Ybert C, Bocquet L (2009) Size dependence of tracer diffusion in a Laponite colloidal gel. Langmuir 25(20):12048–12055

    Article  CAS  Google Scholar 

  • Phulé PP, Mihalcin MP, Genc S (1999) The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids. J Mater Res 14(7):3037–3041

    Article  Google Scholar 

  • Rabinow J (1948) The magnetic fluid clutch. AIEE Trans 67:1308–1315

    Google Scholar 

  • Rankin PJ, Horvath AT, Klingenberg DJ (1999) Magnetorheology in viscoplastic media. Rheol Acta 38(5):471–477

    Article  CAS  Google Scholar 

  • Rich JP, Lammerding J, McKinley GH, Doyle PS (2011a) Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7(21):9933–9943

    Google Scholar 

  • Rich JP, McKinley GH, Doyle PS (2011b) Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. J Rheol 55(2):273–299

    Article  CAS  Google Scholar 

  • Rich JP, McKinley GH, Doyle PS (2012) Arrested chain growth during magnetic directed particle assembly in yield stress matrix fluids. Langmuir 28(7):3683–3689

    Article  CAS  Google Scholar 

  • Ruzicka B, Zaccarelli E (2011) A fresh look at the Laponite phase diagram. Soft Matter 7(4):1268–1286

    Article  CAS  Google Scholar 

  • Ruzicka B, Zulian L, Ruocco G (2004) Routes to gelation in a clay suspension. Phys Rev Lett 93(25):258301

    Article  CAS  Google Scholar 

  • Ruzicka B, Zulian L, Ruocco G (2006) More on the phase diagram of Laponite. Langmuir 22(3):1106–1111

    Article  CAS  Google Scholar 

  • Shahin A, Joshi YM (2010) Irreversible aging dynamics and generic phase behavior of aqueous suspensions of laponite. Langmuir 26(6):4219–4225

    Article  CAS  Google Scholar 

  • Spencer BF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model for magnetorheological dampers. J Eng Mech-ASCE 123(3):230–238

    Article  Google Scholar 

  • Thompson DW, Butterworth JT (1992) The nature of Laponite and its aqueous dispersions. J Colloid Interface Sci 151(1):236–243

    Article  CAS  Google Scholar 

  • Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A (2001) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44(1):91–104

    Article  Google Scholar 

  • Waigh TA (2005) Microrheology of complex fluids. Rep Prog Phys 68(3):685–742

    Article  Google Scholar 

  • Zhang K, Choi BI, Choi HJ, Jhon MS (2010) Comment on ’Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities’. Nanotechnology 21(37):378001

    Article  Google Scholar 

  • Zitha PLJ (2004) Method of drilling with magnetorheological fluid. US patent number 7021406

Download references

Acknowledgements

Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF Grant No. 49956-ND9) for financial support of this research. The authors are especially grateful to Dr. Murat Ocalan for assistance and many helpful discussions regarding the custom-built magnetorheometry fixture. Further acknowledgement is given to Ki Wan Bong, Dr. Matthew Helgeson, and Dr. Dong Hun Kim for help with SEM imaging, particle size characterization, and Magnetometer measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth H. McKinley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, J.P., Doyle, P.S. & McKinley, G.H. Magnetorheology in an aging, yield stress matrix fluid. Rheol Acta 51, 579–593 (2012). https://doi.org/10.1007/s00397-012-0632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0632-z

Keywords

Navigation