Skip to main content
Log in

Motion and shape of an axisymmetric viscoplastic drop slowly falling through a viscous fluid

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Slow sedimentation of a deformable drop of Bingham fluid in an unbounded Newtonian medium is studied using a variation of the integral equation method (Toose et al., J Eng Math 30:131–150, 1996, Int J Numer Methods Fluids 30:653–674, 1999). The Green function for the Stokes equation is used, and the non-Newtonian stress is treated as a source term. The computations are performed for a range of physical parameters of the system. It is demonstrated that initially deformed drop similar to Newtonian ones breaks up for high capillary number, Ca, and stabilizes to steady shapes at low Ca. Estimations of critical capillary number for specific initial deformations demonstrated its growth (increase in the stability of the drop) with the yield stress magnitude both for prolate and oblate initial shapes. Prolate initial shapes become more stable with the increase of the plastic viscosity. In contrast to this, for low yield stress, oblate shapes are destabilized with the growth of the plastic viscosity. This effect is similar to the effect of the viscosity of a Newtonian drop on its stability. However, at higher yield stress, the effect of plastic viscosity is reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Batchelor JK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Beauline M, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J Non-Newton Fluid Mech 72:55–71

    Article  Google Scholar 

  • Bercovier M, Engelman M (1980) A finite element method for the incompressible non-Newtonian flows. J Comp Phys 36:313–326

    Article  Google Scholar 

  • Beris AN, Tsamopoulos JA, Armstrong RC, Brown RA (1985) Creeping motion of a sphere through a Bingham plastic. J Fluid Mech 158:219–244

    Article  CAS  Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  • Blackery J, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with a Bingham plastic. J Non-Newton Fluid Mech 70:59–77

    Article  CAS  Google Scholar 

  • Burgos GR, Alexandrou AN, Entov V (1999) On determination of yield surfaces in Hershel-Bulkley fluids. J Non-Newton Fluid Mech 43:463–483

    CAS  Google Scholar 

  • Bush MB, Tanner RI (1983) Numerical solution of viscous flows using integral equation method. Int J Numer Methods Fluids 3:71–92

    Article  Google Scholar 

  • Bush MB, Tanner RI, Phan-Thien N (1985) A boundary element investigation of extrudate swell. J Non-Newton Fluid Mech 18:143–162

    Article  CAS  Google Scholar 

  • Chen CS, Brebbia CA, Power H (1999) Dual reciprocity method using compactly supported radial basis functions. Commun Numer Methods Eng 15:137–150

    Article  Google Scholar 

  • Favelukis M, Lavrenteva OM, Nir A (2005) Deformation and breakup of a non-Newtonian slender drop in an extensional flow. J Non-Newton Fluid Mech 125:49–59

    Article  CAS  Google Scholar 

  • Favelukis M, Lavrenteva OM, Nir A (2006) Deformation and breakup of a non-Newtonian slender drop in an extensional flow: inertial effects and stability. J Fluid Mech 563:133–158

    Article  Google Scholar 

  • German G, Bertola V (2010) Formation of viscoplastic drops by capillary breakup. Phys Fluids 22:33101

    Article  Google Scholar 

  • Gillaspy PH, Hoffer TE (1983) Experimental measurements of the effect of viscosity on drag for liquid drops. AIChE 29:229–236

    Article  CAS  Google Scholar 

  • Giraldo M, Power H, Florez WF (2009a) Numerical simulation of the motion and deformation of a non-Newtonian shear-thinning drop suspended in a Newtonian circular Couette flow using DR-BEM. Eng Anal Bound Elem 33:93–104

    Article  Google Scholar 

  • Giraldo M, Power H, Florez WF (2009b) Mobility of shear thinning viscous drops in a shear Newtonian carrying flow using DR-BEM. Int J Numer Methods Fluids 59:1321–1349

    Article  Google Scholar 

  • Gurkan T (1989) Motion of a circulating power-law drop translating through Newtonian fluid at intermediate Reynolds numbers. Chem Eng Commun 80:53–67

    Article  CAS  Google Scholar 

  • Hsu AS, Leal LG (2009) Deformation of a viscoelastic drop in planar extensional flows of a Newtonian fluid. J Non-Newton Fluid Mech 160:176–180

    Article  CAS  Google Scholar 

  • Khayat RE (1998) Boundary element analysis of planar drop deformation in confined flow. Part II Viscoelastic effects. Eng Anal Bound Elem 22(4):291–306

    Article  Google Scholar 

  • Khayat RE (2000a) Boundary-only approach to the deformation of a shear-thinning drop in extensional Newtonian Flow. Int J Numer Methods Fluids 33(4):559–581

    Article  Google Scholar 

  • Khayat RE (2000b) Three-dimensional boundary element analysis of drop deformation in confined flow for Newtonian and viscoelastic systems. Int J Num Meth Fluids 34(3):241–275

    Article  Google Scholar 

  • Kishore N, Chhabra RP, Eswaran V (2008) Effect of dispersed phase rheology on the drag of single and of ensembles of fluid spheres at moderate Reynolds numbers. Chem Eng J 141:387–392

    Article  CAS  Google Scholar 

  • Koh CG, Leal LG (1989) The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys Fluids A 1:1309–1314

    Article  CAS  Google Scholar 

  • Koh CG, Leal LG (1990) An experimental investigation on the stability of viscous drops translating through a quiescent fluid. Phys Fluids A 2:2103–2109

    Article  CAS  Google Scholar 

  • Kojima M, Hinch EJ, Acrivos A (1984) The formation and expansion of a toroidal drop moving in a viscous fluid. Phys Fluids 27:19–32

    Article  CAS  Google Scholar 

  • Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York

    Google Scholar 

  • Lavrenteva OM, Holenberg Yu, Nir A (2009) Motion of viscous drops in tubes filled with yield stress fluid. Chem Eng Sci 64(22):4772–4786

    Article  CAS  Google Scholar 

  • Li J, Renardy YY (2000) Shear-induced rupturing of a viscous drop in Bingham liquid. J Non-Newton Fluid Mech 95:235–251

    Article  CAS  Google Scholar 

  • Liu BT, Muller SJ, Denn MM (2002) Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J Non-Newton Fluid Mech 102:179–191

    Article  CAS  Google Scholar 

  • Liu BT, Muller SJ, Denn MM (2003) Interactions of two rigid spheres translating collinearly in creeping flow in a Bingham material. J Non-Newton Fluid Mech 113:49–67

    Article  CAS  Google Scholar 

  • Marrucci G, Apuzzo G, Astarita G (1970) Motion of liquid drops in non-Newtonian systems. AIChE 16:538–543

    Article  CAS  Google Scholar 

  • Mukherjee S, Sarkar K (2009) Effect of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady shear. J Non-Newton Fluid Mech 160:104–112

    Article  CAS  Google Scholar 

  • Mukherjee S, Sarkar K (2010) Effects of viscoelasticity on the retraction of a sheared drop. J Non-Newton Fluid Mech 165:640–649

    Article  Google Scholar 

  • Oldroyd JD (1947) A rational formulation of the equations of plastic flow for a Bingham solid. Proc Camb Philol Soc 43:100–105

    Article  CAS  Google Scholar 

  • Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    Article  CAS  Google Scholar 

  • Potapov A, Spivak R, Lavrenteva OM, Nir A (2006) Simulation of motion and deformation of Newtonian drops in Bingham fluid. Ind Eng Chem Res 45(21):6985–6995

    Article  CAS  Google Scholar 

  • Pozrikidis C (1990) The instability of moving viscous drop. J Fluid Mech 210:1–21

    Article  CAS  Google Scholar 

  • Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press, New York

    Book  Google Scholar 

  • Prager W (1954) On slow viscoplastic flow. Studies in mathematics and mechanics: R. von Mises presentation volume. Academic, New York, pp 208–216

    Google Scholar 

  • Ramkissoon H (1989) Stokes flow past a Reiner-Rivlin fluid sphere. ZAMM 69:259–261

    Article  Google Scholar 

  • Ramkissoon H (1998) Stokes flow past a non-Newtonian fluid spheroid. ZAMM 78:61–65

    Article  Google Scholar 

  • Ramkissoon H, Rahamam K (2001) Non-Newtonian fluid sphere in a spherical container. Acta Mech 149:239–245

    Article  Google Scholar 

  • Rodrigue D (2008) The effect of surfactants on deformation of falling non-Newtonian drops in a Newtonian fluid. Can J Chem Eng 86:105–109

    Article  CAS  Google Scholar 

  • Rodrigue D, Blanchet JF (2001) The motion of drops: their shapes in the case of one viscoelastic phase. In: Proc of ICMF-2001, paper 933

  • Roumeliotis J, Fulford GR (2000) Droplet interactions in creeping flow. Comput Fluids 29:435–450

    Article  CAS  Google Scholar 

  • Singh JP, Denn MM (2008) Interacting two-dimensional bubbles and droplets in a yield stress fluids. Phys Fluids 20:040901

    Article  Google Scholar 

  • Sostarecz MC, Belmonte A (2003) Motion and shape of viscoelastic drop falling through a viscous fluid. J Fluid Mech 497:235–252

    Article  CAS  Google Scholar 

  • Toose EM, Geurts BJ, Kuerten JGM (1995) A boundary integral method for 2- dimensional (non)-Newtonian drops in slow viscous-flow. J Non-Newton Fluid Mech 60:129–154

    Article  CAS  Google Scholar 

  • Toose EM, van den Ende D, Geurts BJ, Kuerten JGM, Zandbergen PJ (1996) Axisymmetric non-Newtonian drops treated with a boundary integral method. J Eng Math 30:131–150

    Article  Google Scholar 

  • Toose EM, Geurts BJ, Kuerten JGM (1999) A 2D boundary element method for simulating the deformation of axisymmetric compound non-Newtonian drops. Int J Numer Methods Fluids 30:653–674

    Article  Google Scholar 

  • Tripathi A, Chhabra RP (1992) Slow motion of a power law liquid drop in another immiscible power law fluid. Arch Appl Mech 62:495–504

    Article  Google Scholar 

  • Tripathi A, Chhabra RP (1994) Hydrodynamics of creeping motion of an ensemble of power law liquid drops in another immiscible power law medium. Int J Eng Sci 32:791–803

    Article  CAS  Google Scholar 

  • Tsamopoulos J, Dimakopoulos Y, Chatzidai N, Karapetsas G, Pavlidis M (2008) Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J Fluid Mech 601:123–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Israel Science Foundation (grant 847/06). OML acknowledge the support of the Ministry of Immigrant Absoption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinoam Nir.

Appendix

Appendix

The components of the kernels W and M in Eq. 12 are given by the following expressions.

$$ W_z^{zz} =r_y \Delta z\left( {3\Delta z^2E_{50} -E_{30} } \right), $$
$$ W_z^{zr} =r_y \left( {r_y E_{30} -r_x E_{31} -3\Delta z^2r_y E_{50} +3\Delta z^2r_x E_{51} } \right), $$
$$ W_z^{rz} =-r_y \left( {r_y E_{30} -r_x E_{31} +3\Delta z^2r_y E_{50} -3\Delta z^2r_x E_{51} } \right), $$
$$ W_z^{rr} =-r_y \Delta z\left( {E_{30} -3r_y^2 E_{50} +6r_x r_y E_{51} -3r_x^2 E_{52} } \right), $$
$$ W_r^{zz} =-r_y \left( {r_x E_{30} -r_y E_{31} -3\Delta z^2r_x E_{50} +3\Delta z^2r_y E_{51} } \right), $$
$$ \begin{array}{lll} W_r^{zr} &=&r_y \Delta z\left( {E_{31} -3r_x r_y E_{50} +3r_x ^2E_{51} +3r_y ^2E_{51}}\right. \\&&{\kern28pt}\left.{-\ 3r_x r_y E_{52} {\vphantom{3r_y ^2E_{51}}}} \right), \end{array} $$
$$ \begin{array}{lll} W_r^{rz} &=&-r_y \Delta z\left( {E_{31} +3r_x r_y E_{50} -3r_x ^2E_{51} -3r_y ^2E_{51}}\right.\\&&{\kern36pt}\left.{+\ 3r_x r_y E_{52} {\vphantom{-3r_y ^2E_{51}}}} \right), \end{array} $$
$$ \begin{array}{lll} W_r ^{rr}&=&-r_y \left( {r_x E_{30} -r_y E_{31} -3r_x r_y^2 E_{50} +3r_y^3 E_{51}}\right.\\ &&{\kern24pt}\left.{+\ 6r_y r_x^2 E_{51} -3r_x^3 E_{52}}\right. \\&&{\kern24pt}\left.{-\ 6r_x r_y^2 E_{52} +3r_x^2 r_y E_{53} } \right) \end{array} $$
$$ W_z^{\varphi \varphi } =-r_y \Delta z\left( {E_{30} -3r_x ^2E_{50} +3r_x ^2E_{52} } \right), $$
$$ \begin{array}{lll} W_r ^{\varphi \varphi }&=&-r_y \left( {r_x E_{30} -r_y E_{31} -3r_x^3 E_{50} +3r_y r_x^2 E_{51}}\right.\\ &&{\kern20pt}\left.{+\ 3r_x^3 E_{52} -3r_x^2 r_y E_{53} } \right), \end{array} $$
$$ M_z^z =r_y \left( {E_{10} +\Delta z^2E_{30} } \right), $$
$$ M_r^z =r_y \Delta z\left( {r_y E_{31} -r_x E_{30} } \right), $$
$$ M_z^r =r_y \Delta z\left( {r_y E_{30} -r_x E_{31} } \right), $$
$$ M_r^r =r_y \left( {E_{11} +r_y^2 E_{31} +r_x^2 E_{31} -r_x r_y E_{30} -r_x r_y E_{32} } \right), $$

Here Δz = z x  − z y ,

$$ \begin{array}{rll} E_{mn} \left( {\Delta z,r_x ,r_y } \right)&=&\frac{4k^m}{\left( {4r_x r_y } \right)^{m/2}}\int\limits_0^{\pi /2} {\frac{\left( {2\cos ^2\omega -1} \right)^n}{\left( {1-k^2\cos ^2\omega } \right)^{m/2}}} d\omega ,\\ k^2&=&\frac{4r_x r_y }{\Delta z^2+\left( {r_x +r_y } \right)^2}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagin, I., Pathak, M., Lavrenteva, O.M. et al. Motion and shape of an axisymmetric viscoplastic drop slowly falling through a viscous fluid. Rheol Acta 50, 361–374 (2011). https://doi.org/10.1007/s00397-010-0478-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0478-1

Keywords

Navigation