Skip to main content
Log in

A new interpretation for the dynamic behaviour of complex fluids at the sol–gel transition using the fractional calculus

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We propose to analyse power law shear stress relaxation modulus observed at the sol–gel transition (SGT) in many gelling systems in terms of fractional calculus. We show that the critical gel (gel at SGT) can be associated to a single fractional element and the gel in the post-SGT state to a fractional Kelvin–Voigt model. In this case, it is possible to give a physical interpretation to the fractional derivative order. It is associated to the power law exponent of the shear modulus related to the fractal dimension of the critical gel. A preliminary experimental application to silica alkoxide-based systems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. When the lower limit is − ∞ in Eq. 7, the equation is named Weyl integral.

References

  • Adam M, Delsanti M, Durand D (1985) Mechanical measurements in the reaction bath during the polycondensation reaction near the gelation threshold. Macromolecules 18:2285–2290

    Article  CAS  Google Scholar 

  • Adolf D, Martin JE, Wilcoxon JP (1990) Evolution of structure and viscoelasticity in an epoxy near the sol–gel transition. Macromolecules 23:527–531

    Article  CAS  Google Scholar 

  • Alcaraz J, Buscemi L, Grabulosa M, Trepart X, Fabry B, Farré R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic microscopy. Biophys J 84:2071–2079

    Article  CAS  Google Scholar 

  • Alvarez F, Alegra A, Comenero J (1991) Relationship between the time-domain Kohlrausch–Williams–Watt and frequency-domain Havriliak–Negami relaxation functions. Phys Rev B 44:7306–7312

    Article  Google Scholar 

  • Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    Article  CAS  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Article  CAS  Google Scholar 

  • Benny Lee KC, Siegel J, Webb SED, Lévêque-Fort S, Cole MJ, Jones R, Dowling K Lever MJ, French PMW (2001) Application of stretched exponential function of fluorescence lifetime imaging. Biophys J 81:1265–1274

    Article  Google Scholar 

  • Berry GC, Plazek DJ (1997) On the use of stretched-exponential functions for both viscoelastic creep and stress relaxation. Rheol Acta 36:320–329

    CAS  Google Scholar 

  • Bu H, Kjoniksen AL, Knudsen KD, Nyström B (2004) Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules 5:1470–1479

    Article  CAS  Google Scholar 

  • Caputo M, Mainardi M (1966) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–137

    Article  Google Scholar 

  • Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Riv Nuovo Cim 1:161–198

    Article  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stochiometry. J Rheol 31:683–697

    Article  CAS  Google Scholar 

  • Chenite A, Buschmann M, Wang D, Chaput C, Kandari N (2001) Rheological characterization of thermogelling chitosan/glycerol phosphate solutions. Carbohydr Polym 46:39–47

    Article  CAS  Google Scholar 

  • Cocard S, Tassin JF, Nicolai T (2000) Dynamical mechanical properties of gelling colloidal disks. J Rheol 44:585–594

    Article  CAS  Google Scholar 

  • Cumbrera FL, Sanchez-Bajo F, Guibertau F, Solier JD, Munoz A (1993) The Williams–Watt dependence as a common phenomenological approach to relaxation process in condensed matter. J Math Sci 28:5387–5396

    Article  CAS  Google Scholar 

  • de Arcangelis L, Del Gado E, Coniglio A (2002) Complex dynamics in gelling systems. Eur Phys 9:277–282

    Google Scholar 

  • de Gennes PG (1979) Scaling concept in polymer physics. Cornell University Press, Ithaca and London, pp 137–145

    Google Scholar 

  • de Rosa ME, Winter HH (1994) The effect of entanglements on the rheological behaviour of polybutadiene critical gels. Rheol Acta 33:220–237

    Article  Google Scholar 

  • Del Gado E, Fiero A, de Arcangelis L, Coniglio A (2003) A unifying model for chemical and colloidal gels. Europhys Lett 63:1–7

    Article  Google Scholar 

  • English RJ, Raghavan SR, Jenkis RD, Khan SA (1999) Associative polymers bearing n-alkyl hydrophobes: rheological evidence for microgel like behaviour. J Rheol 43:1175–1194

    Article  CAS  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 8:148102-1–148102-4

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Flory PJ (1942) Constitution of three-dimensional polymers and the theory of gelation. J Phys Chem 46:132–140

    Article  CAS  Google Scholar 

  • Gemant A (1936) A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7:311–317

    Article  Google Scholar 

  • Gemant A (1938) On fractional differentials. Philos Mag 25:540–549

    Google Scholar 

  • Hess W, Vilgis TA, Winter HH (1988) Dynamical critical behavior during chemical gelation and vulcanization. Macromolecules 21:2536–2542

    Article  CAS  Google Scholar 

  • Heymans N, Bauwens J-C (1994) Fractal rheological and fractional differential equations for viscoelastic behavior. Rheol Acta 33:210–219

    Article  CAS  Google Scholar 

  • Hsu SH, Jamieson AM (1993) Viscoelastic behaviour at the thermal sol–gel transition of gelatin. Polymer 34:2602–2608

    Article  CAS  Google Scholar 

  • Isuka A, Winter HH, Hashimoto T (1997) Self-similar relaxation behaviour at the gel point of a blend of a crosss-linking poly(ε-caprolactone) diol with a poly(styrene-co-acrylonitrile). Macromolecules 30:6158–6165

    Article  Google Scholar 

  • Izuka A, Winter HH, Hashimoto T (1992) Molecular weight dependence of viscoelasticity of polyprolactone critical gels. Macromolecules 25:2422–2428

    Article  CAS  Google Scholar 

  • Kjoniksen AL, Nyström B (1996) Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinylalcohol) near the gelation threshold. Macromolecules 29:5215–5222

    Article  CAS  Google Scholar 

  • Koike A, Nemoto N, Watanabe Y, Osaki K (1996) Dynamic viscoelastic and FI-IR measurements of end-crosslinking α,ω dihydroxyl polybutadiene solutions near the gel point in the gelation process. Polymer 28:942–950

    Article  CAS  Google Scholar 

  • Lang P, Burchard W (1991) Dynamic light scattering at the gel point. Macromolecules 24:814–815

    Article  CAS  Google Scholar 

  • Larson RG (1985) Constitutive relationships for polymeric materials with power law distributions of relaxation times. Rheol Acta 24:327–334

    Article  CAS  Google Scholar 

  • Lin YG, Mallin DT, Chien JCW, Winter HH (1991) Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24:850–854

    Article  CAS  Google Scholar 

  • Martin JE, Wilcoxon JP (1988) Critical dynamics of the sol–gel transition. Phys Rev Lett 61:373–376

    Article  CAS  Google Scholar 

  • Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity of near critical gels. Phys Rev Lett 61:2620–2623

    Article  CAS  Google Scholar 

  • Martin JE, Wilcoxon JP, Odinek J (1991) Decay of density fluctuations in gels. Phys Rev A 43:858–872

    Article  CAS  Google Scholar 

  • Mason TG, Gang H, Weitz DA (1997) Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids. J Opt Soc Am A 14:139–149

    Article  CAS  Google Scholar 

  • Maxwell JC (1867) On the dynamical theory of gases. Philos Trans R Soc 157:49–88

    Article  Google Scholar 

  • Michon C, Cuvelier G, Launay B (1993) Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol Acta 32:94–103

    Article  CAS  Google Scholar 

  • Ming JM, Jerome R, Teyssié P (1997) Triblock copolymer based thermoreversible gels: 1 self association of sPMMA end-blocks ino-xylene and viscoelasticity of the gels. Polymer 38:347–354

    Article  Google Scholar 

  • Mours MM, Winter HH (1996) Relaxation patterns of nearly critical gels. Macromolecules 29:7221–7229

    Article  CAS  Google Scholar 

  • Muthukumar M (1989) Screening effect viscoelasticity near the gel point. Macromolecules 22:4656–4658

    Article  CAS  Google Scholar 

  • Nijenhuis te N, Winter HH (1989) Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22:411–414

    Article  Google Scholar 

  • Nutting PG (1921) A new generalized law of deformation. J Franklin Inst 191:679–685

    Article  Google Scholar 

  • Palmer A, Mason TG, Xu J, Kuo SC, Wirtz D (1999) Diffusing wave spectroscopy microrheology of actin filament networks. Biophys J 76:1063–1071

    Article  CAS  Google Scholar 

  • Ponton A, Barboux Doeuff S, Sanchez C (1999) Rheology of titanium oxide of based gels: determination of gelation time versus temperature. J Coll Int Sci A 162:177–192

    Google Scholar 

  • Power DJ, Rodd AB, Paterson L, Boger DV (1998) Gel transition studies on non ideal polymer networks using small amplitude oscillatory rheometry. J Rheol 42:1021–1037

    Article  CAS  Google Scholar 

  • Puig-de-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol 91:1152–1159

    CAS  Google Scholar 

  • Ren SZ, Shi WF, Zhang WB, Sorensen CM (1992) Anomalous diffusion in aqueous solutions of gelatin. Phys Rev A 45:2416–2422

    Article  CAS  Google Scholar 

  • Richtering HW, Gagnon KD, Lenz RW, Fuller RC, Winter HH (1992) Physical gelation of a bacterial thermoplastic elastomer. Macromolecules 25:2249–2433

    Google Scholar 

  • Rodd AB, Cooper-White J, Dunstan DE, Boger DV (2001) Polymer concentration dependence of the gel point for chemically modified biopolymer networks using small amplitude oscillatory. Polymer 42:3923–3928

    Article  CAS  Google Scholar 

  • Romer S, Schefflod F, Schurtenberger P (2000) Sol–gel transition of concentrated colloidal suspensions. Phys Rev Lett 85:4980–4983

    Article  CAS  Google Scholar 

  • Rosa ME, Mours M, Winter HH (1997) The gel point as reference state: a simple kinetic model for crosslinking polybutadiene via hydrosilation. Polym Gels Netw 5:69–94

    Article  Google Scholar 

  • Rosa ME, Winter HH (1994) The effect of entanglements on the rheological behavior of polybutadiene critical gels. Rheol Acta 33:220–237

    Article  Google Scholar 

  • Sato T, Watanabe H, Osaki K (2000) Thermoreversible physical gelation of block copolymers in a selective solvents. Macromolecules 33:1686–1691

    Article  CAS  Google Scholar 

  • Scanlan JC, Winter HH (1991) Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules 24:47–54

    Article  CAS  Google Scholar 

  • Schaefer DW, Keefer KD (1984) Fractal geometry of silica condensation polymers. Phys Rev Lett 53:1383–1386

    Article  CAS  Google Scholar 

  • Schiessel H, Blumen A (1995) Mesoscopic pictures of the sol–gel transition: ladder models and fractals networks. Macromolecules 28:4013–4019

    Article  CAS  Google Scholar 

  • Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Phys Chem 11:45–55

    Article  CAS  Google Scholar 

  • Takenata M, Kobayashi T, Hashimoto T, Takahashi M (2002) Time evolution of dynamic shear moduli in a physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt: critical exponent and gel strength. Phys Rev, E 65:041401-01–041401-07

    Google Scholar 

  • Tanaka T (1999) In: Tanaka T (ed) Experimental methods in polymer science: modern methods in polymer research and technology, chap 9. Academic, New York, pp 347–362

    Google Scholar 

  • Tempel M, Isenberg G, Sackmann E (1996) Temperature-induced sol–gel transition and microgel formation in α-actin crosslinked actin networks: a rheological study. Phys Rev E 54:1802–1810

    Article  CAS  Google Scholar 

  • Tixier T, Tordjeman Ph (2003) Dynamic exponent of PDMS networks at the sol–gel transition. Polymer 44:6937–6942

    Article  CAS  Google Scholar 

  • Venkataramann SK, Winter HH (1990) Finite shear strain behavior of a crosslinking polydimethylsiloxane near its gel point. Rheol Acta 29:423–432

    Article  Google Scholar 

  • Vlassopoulos D, Chira I, Lapinet B, McGrail PT (1998) Gelation kinetics in elastomer thermoset polymer blends. Rheol Acta 37:614–623

    Article  CAS  Google Scholar 

  • Warlus S, Ponton A, Leslous A (2003) Dynamic viscoelastic properties of silica alkoxide during the sol–gel transition. Eur Phys E 12:275–282

    Article  CAS  Google Scholar 

  • Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Winter HH, Morganelli P, Chambon F (1988) Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules 21:532–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Ponton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warlus, S., Ponton, A. A new interpretation for the dynamic behaviour of complex fluids at the sol–gel transition using the fractional calculus. Rheol Acta 48, 51–58 (2009). https://doi.org/10.1007/s00397-008-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0306-z

Keywords

Navigation