Skip to main content
Log in

Rheology of carbon nanofiber-reinforced polypropylene

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of two different nanocomposite systems consisting in the dispersion of carbon nanofibers (CNFs) in polypropylene are investigated. The nanoreinforced systems were identically prepared with two CNFs that differ only in the length of the fibers being otherwise identical to analyze the effect of fiber aspect ratio. Linear dynamic viscoelasticity and the steady-state rheology of the two different nanocomposites are presented. The system reinforced with CNFs with larger aspect ratio shows several rheological features that resemble peculiarities of rodlike polymers in the nematic liquid crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Choi YK, Sugimoto KI, Song SM, Endo M (2005) Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets. Mater Lett 59(27):3514–3520

    Article  CAS  Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang YH, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1):154–160

    Article  CAS  Google Scholar 

  • Dealy M, Wissbrun KF (1999) Melt rheology and its role in plastic processing theory and application. Kluwer, Dordrecht

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Folgar F, Tucker CL (1984) Orientation behaviour of fibres in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  CAS  Google Scholar 

  • Gao Y, He P, Lian J, Wang LM, Qian D, Zhao J, Wang W, Schulz MJ, Zhang J, Zhou XP, Shi DL (2006) Improving the mechanical properties of polycarbonate nanocomposites with plasma-modified carbon nanofibers. J Macromol Sci, Phys 45(4):671–679

    Article  CAS  Google Scholar 

  • Gauthier C, Chazeau L, Prasse T, Cavaille JY (2005) Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices. Compos Sci Technol 65(2):335–343

    Article  CAS  Google Scholar 

  • Kang IP, Heung YY, Kim JH, Lee JW, Gollapudi R, Subramaniam S, Narasimhadevara S, Hurd D, Kirikera GR, Shanov V, Schulz MJ, Shi DL, Boerio J, Mall S, Ruggles-Wren M (2006) Introduction to carbon nanotube and nanofiber smart materials. Compos Eng 37(6):382–394

    Article  CAS  Google Scholar 

  • Kelarakis A, Yoon K, Somani R, Sics I, Chen XM, Hsiao BS, Chu B (2006) Relationship between structure and dynamic mechanical properties of a carbon nanofiber reinforced elastomeric nanocomposite. Polymer 47(19):6797–6807

    Article  CAS  Google Scholar 

  • Kiss G, Porter RS (1978) Rheology of concentrated solutions of poly(g -benzyl-glutamate). J Polym Sci, Polymer Symposia 65:193–211

    Article  CAS  Google Scholar 

  • Kitano T, Kataoka T, Nagatsuka Y (1984) Shear flow rheological properties of vinylon- and glass fiber -reinforced polyethylene melts. Rheol Acta 23(1):20–23

    Article  CAS  Google Scholar 

  • Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang XF, Vaia RA, Park C, Adams WW, Hauge RH, Smalley RE, Ramesh S, Willis P (2002) Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35(24):9039–9043

    Article  CAS  Google Scholar 

  • Larson RG (1990) Arrested tumbling in shearing flows of liquid crystal polymers. Macromolecules 23:3983–3992

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92(4):048302

    Article  CAS  Google Scholar 

  • Lozano K, Yang S, Zeng Q (2004) Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J Appl Polym Sci 93:155–162

    Article  CAS  Google Scholar 

  • Ma HM, Zeng JJ, Realff ML, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63(11):1617–1628

    Article  CAS  Google Scholar 

  • Marrucci G, Maffettone PL (1989) Description of the liquid crystalline phase of rodlike polymers at high shear rates. Macromolecules 22:4076–4082

    Article  CAS  Google Scholar 

  • Montesi A, Pena AA Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058303

    Article  CAS  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Quijada-Garrido I, Siebert H, Friedrich C, Schmidt C (2000) Flow behavior of two side-chain liquid crystal polymers studied by transient rheology. Macromolecules 33(10):3844–3854

    Article  CAS  Google Scholar 

  • Sandler J, Windle AH, Werner P, Altstadt V, Es MV, Shaffer MSP (2003) Carbon-nanofibre-reinforced poly(ether ether ketone) fibres. J Mater Sci 38(10):2135–2141

    Article  CAS  Google Scholar 

  • Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    Article  CAS  Google Scholar 

  • Shen J, Han XM, Lee LJ (2006) Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J Cell Plast 42(2):105–126

    Article  CAS  Google Scholar 

  • Shenoy AV (1999) Rheology of filled polymer systems. Kluwer, Dordrecht

    Google Scholar 

  • Song W, Windle AH (2005) Isotropic–nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38:6181–6188

    Article  CAS  Google Scholar 

  • Song W, Kinloch I, Windle AH (2003) Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302:1363–1363

    Article  CAS  Google Scholar 

  • Utracki LA (1986) Flow and flow orientation of composites containing anisometric particles. Polym Compos 7(5):274–282

    Article  CAS  Google Scholar 

  • Wang YR, Xu JH, Bechtel SE, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45(6):919–941

    Article  CAS  Google Scholar 

  • Xu J, Donohoe JP, Pittman CU (2004) Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Composites Part A 35(6):693–701

    Article  CAS  Google Scholar 

  • Xu JH, Chatterjee S, Koelling KW, Wang YR, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562

    Article  CAS  Google Scholar 

  • Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Composites Part B 38(2):228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FIRB MAPIONANO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luca Maffettone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccia, S., Ferri, D., Tabuani, D. et al. Rheology of carbon nanofiber-reinforced polypropylene. Rheol Acta 47, 425–433 (2008). https://doi.org/10.1007/s00397-008-0265-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0265-4

Keywords

Navigation