Skip to main content
Log in

Rheology in Longitudinal (Ultrasound) Mode. Review

  • REVIEW
  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

This review is dedicated to the topic of longitudinal rheology, a branch of rheology that is complementary to traditional shear rheology, and yet not as widely explored. Longitudinal rheology differs from typical shear rheology by the type of stress applied. Longitudinal stress is a wave, which causes liquid expansion and compression that occurs when ultrasound propagates through such liquid. The penetration depth of a longitudinal stress is much longer than for a shear stress, which allows this method to be used for studying liquid bulk properties at the MHz range. The concept of longitudinal rheology has been known for centuries, but only became available in commercial instruments as recently as the 1990s. We describe here the main principles of this technique, as well as present an overview of existing published applications, which include:

—Bulk viscosity

—Microviscosity

—Hookean coefficient of inter-particle bonds

—Newtonian liquid test at MHz range

—Compressibility

—Sol-gel transition

—Micellar systems

—Dissolution of polymers

—Liquid mixtures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Rayleigh, L., The Theory of Sound, New York: Macmillan and Co., 1896, vol. 2, 2nd ed.

    Google Scholar 

  2. Stokes, G.G., Philos. Mag., 1848, vol. 33, p. 349.

    Google Scholar 

  3. Stokes, G.G., Trans. Cambridge Philos. Soc., 1845, vol. 8, p. 287.

    Google Scholar 

  4. Dukhin, A.S. and Goetz, J.P., Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound, Amsterdam: Elsevier, 2017, 3rd ed.

    Google Scholar 

  5. Williams, P.R. and Williams, D.J.A., J. Non-Newtonian Fluid Mech., 1992, vol. 42, p. 267.

    Article  CAS  Google Scholar 

  6. Williams, P.R. and Williams, R.L., J. Non-Newtonian Fluid Mech., 1997, vol. 68, p. 311.

    Article  CAS  Google Scholar 

  7. Williams, P.R. and Williams, R.L., J. Non-Newtonian Fluid Mech., 1998, vol. 78, p. 203.

    Article  CAS  Google Scholar 

  8. Whorlow, R.W., Rheological Techniques, London: Halstead Press, 1980.

    Google Scholar 

  9. Litovitz, T.A. and Davis, C.M., Physical Acoustics, Mason, W.P., Ed., New York: Academic Press, 1964, vol. 2, p. 281.

    Google Scholar 

  10. Meixner, J. Ann. Phys., 1934, vol. 5, p. 470.

    Google Scholar 

  11. Meixner, J. Kolloid-Zt., 1954, vol. 134, p. 47.

    Google Scholar 

  12. Schroyen, B., Vlassopoulos, D., Puyvelde P.V., and Vermant, J., Rheol. Acta, 2020, vol. 59, p. 1.

    Article  CAS  Google Scholar 

  13. ISO 20998 Measurement and Characterization of Particles by Acoustics Methods. Part 1. Concepts and Procedures in Ultrasonic Attenuation Spectroscopy, 2006. https://www.iso.org/standard/39869.html.

  14. ISO 20998 Measurement and Characterization of Particles by Acoustics Methods. Part 2. Guidelines for Linear Theory, 2012. https://www.iso.org/ru/standard/43468.html.

  15. ISO 20998 Measurement and Characterization of Particles by Acoustics Methods. Part 3. Guidelines for Non-Linear Theory, (2015). https://www.iso.org/standard/67601.html.

  16. Pellam, J.R. and Galt, J.K., J. Chem. Phys., 1946, vol. 14, p. 608.

    Article  CAS  Google Scholar 

  17. Pinkerton, J.M.M., Nature, 1947, vol. 160, p. 128.

    Article  Google Scholar 

  18. Lambert, J.H., Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae, Augsburg: Eberhard Klett Verlag, 1760, p. 391.

    Google Scholar 

  19. eer, A., Ann. Phys. Chem., 1852, vol. 86, p. 78

    Article  Google Scholar 

  20. Dukhin, A.S. and Goetz, P.J., US Patent 6910367B1, 2005.

  21. Dukhin, A.S. and Goetz, P.J., J. Chem. Phys., 2009, vol. 130, 124519.

    Article  PubMed  CAS  Google Scholar 

  22. Malbrunot, P., Boyer, A., Charles, E., and Abachi, H., Phys. Rev. A., 1983, vol. 27, p. 1523.

    Article  CAS  Google Scholar 

  23. Dukhin, A.S., Parlia, S., and Somasundaran, P., J. Colloid Interface Sci., 2020, vol. 560, p. 492.

    Article  CAS  PubMed  Google Scholar 

  24. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Englewood Cliffs: Prentice-Hall, 1965.

    Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, London: Pergamon Press, 1959.

    Google Scholar 

  26. Morse, P.M., Vibration and Sound, College Park: Am. Inst. Phys., 1991.

    Google Scholar 

  27. Morse, P.M. and Ingard, K.U., Theoretical Acoustics, Princeton: Princeton Univ. Press, 1986.

    Google Scholar 

  28. Temkin, S., Elements of Acoustics, New York: John Wiley & Sons, 1981, 1st ed.

    Google Scholar 

  29. Enskog, D., Kungl. Sven. Vetenskapsakad. Handl., 1922, vol. 63, no. 4.

  30. Kirkwood, J.G. J. Chem. Phys., 1946, vol. 14, p. 180.

    Article  CAS  Google Scholar 

  31. Kirkwood, J.G., Buff, F.P., and Green, M.S., J. Chem. Phys., 1949, vol. 17, p. 988.

    Article  CAS  Google Scholar 

  32. Hoheisel, C., Vogelsang, R., and Schoen, M., J. Chem. Phys., 1987, vol. 87, p. 7195.

    Article  CAS  Google Scholar 

  33. Okumura, H. and Yonezawa, F., J. Phys. Soc. Jpn., 2002, vol. 71, p. 685.

    Article  CAS  Google Scholar 

  34. Okumura, H. and Yonezawa, F., J. Chem. Phys., 2002, vol. 116, p. 7400.

    Article  CAS  Google Scholar 

  35. Meier, K., Laesecke, A., and Kabelac, S., J. Chem. Phys., 2005, vol. 122, 014513.

    Article  CAS  Google Scholar 

  36. Dyer, K., Pettitt, B.M., and Stell, G., J. Chem. Phys., 2007, vol. 126, 034502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bertolini, D. and Tani, A., J. Chem. Phys., 2001, vol. 115, p. 6285.

    Article  CAS  Google Scholar 

  38. Holmes, M.J., Parker, N.G., and Povey, M.J.W., J. Phys.: Conf. Ser., 2011, vol. 269, 012011.

    Google Scholar 

  39. Graves, R.E. and Argow, B.M., J. Thermophys. Heat Tr., 1999, vol. 13, p. 337.

    Article  CAS  Google Scholar 

  40. Passynski, A., Acta Physicochim. USSR, 1938, vol. 8, p. 385.

    Google Scholar 

  41. Glinski, J. and Burakowski, A., Acta Phys. Pol. A., 2008, vol. 114, p. A-109.

    Article  Google Scholar 

  42. Bockris, J.O’M. and Saluja, P.P.S., J. Phys. Chem., 1972, vol. 76, p. 2140.

    Article  CAS  Google Scholar 

  43. Toubal, M., Asmani, M., Radziszewski, E., and Nongaillard, B., Phys. Med. Biol., 1999, vol. 44, 1277.

    Article  CAS  PubMed  Google Scholar 

  44. Dukhin, A. S., Goetz, P.J., and van de Ven, T.G.M., Colloids Surf. B, vol. 53, p. 121.

  45. Stieler, T., Scholle, F.-D., Weiss, A., Ballauff, M., and Kaatze, U., Langmuir, 2001, vol. 17, p. 1743.

    Article  CAS  Google Scholar 

  46. Barrett-Gultepe, M.A., Gultepe, M.E., and Yeager, E.B., J. Phys. Chem., 1983, vol. 87, p. 1039.

    Article  Google Scholar 

  47. Eigen, M., Discuss. Faraday Soc., 1957, vol. 24, p. 25.

    Article  Google Scholar 

  48. Eigen, M. and de Maeyer, L., Techniques of Organic Chemistry, Weissberger, A., Ed., New York: John Wiley & Sons, 1963, vol. 8, Part 2, p. 895.

    Google Scholar 

  49. De Maeyer, L., Eigen, M., and Suarez, J., J. Am. Chem. Soc., 1968, vol. 90, p. 3157.

    Article  CAS  Google Scholar 

  50. Mason, W.P., Dispersion and absorption of sound in high polymers, in Acoustics I. Encyclopedia of Physics, Berlin: Springer, 1961, vol. 3, p. 361.

    Google Scholar 

  51. Azim, Z., Corredig, M., Koxholt, M., and Alexander, M., Int. Dairy J., 2010, vol. 20, p. 785.

    Article  CAS  Google Scholar 

  52. Ting, C.H., Kuo, F.J., Lien, C.C., and Sheng, C.T., J. Food Eng., 2009, vol. 93, p. 101.

    Article  CAS  Google Scholar 

  53. Borthakur, A. and Zana, R., J. Phys. Chem., 1987, vol. 91, p. 5957.

    Article  CAS  Google Scholar 

  54. Durackova, S., Apostolo, M., Ganegallo, S., and Morbidelli, M., J. Appl. Polym. Sci., 1995, vol. 57, p. 639.

    Article  CAS  Google Scholar 

  55. Bonacucina, G., Misici-Falzi, M., Cespi, M., and Palmieri, G.F., J. Pharm. Sci. 2008, vol. 97, p. 2217.

    Article  CAS  PubMed  Google Scholar 

  56. Kravtchenko, T.P, Renoir, J., Parker, A., and Brigand, G., Food Hydrocol., 1999, vol. 13, p. 219.

    Article  CAS  Google Scholar 

  57. Parker, A., Vigouroux, F., and Reed, W.F., AIChE J., 2000, vol. 46, p. 1290.

    Article  CAS  Google Scholar 

  58. Brochards, F. and De Gennes, P.G., Phys. Chem. Hydrodynam., 1983, vol. 4, p. 313.

    Google Scholar 

  59. Bonacucina, G., Cespi, M., and Palmieri, G.F., Int. J. Pharm., 2009, vol. 377, p. 153.

    Article  CAS  PubMed  Google Scholar 

  60. Zia, R.N. and Brady, J.F., J. Rheol., 2012, vol. 56, p. 1175.

    Article  CAS  Google Scholar 

  61. Lindstrom, S.B, Kodger, T.E., Sprakel, J, and Weitz, D.A., Soft Matter, 2012, vol. 8, p. 3657.

    Article  CAS  Google Scholar 

  62. Bhosale, P.S. and Berg, J.C., Langmuir, 2010, vol. 26, p. 14423.

    Article  CAS  PubMed  Google Scholar 

  63. McCann, C., Acustica, 1970, vol. 22, p. 352.

    Google Scholar 

  64. Dukhin, A.S. and Goetz, P.J., US Patent 6 487 894, 2002.

  65. Hayashi, T., Ohya, H., Suzuki, S., and Endoh, S., J. Soc. Powder Technol. Jpn., 2000, vol. 37, p. 498.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I want to take this opportunity for expressing my gratitude to Colloid Journal for its role in my scientific carrier. My first paper was published here in 1977 with couple dozen more following during next 15 years. These publications by Colloid Journal were quite instrumental in promoting my studies not only within USSR scientific community but internationally as well. Colloid Journal was translated into English even then. It was such delight to see this English version of my favorite journal in McGill University library in early 90th with signs of often use. I am very glad that publication of my contribution to this issue restores those old ties. I wish all the best to Colloid Journal Editorial board, all staff, and contributors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Dukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukhin, A. Rheology in Longitudinal (Ultrasound) Mode. Review. Colloid J 83, 1–19 (2021). https://doi.org/10.1134/S1061933X21010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21010051

Navigation