Skip to main content
Log in

Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A theory is developed of the electrophoresis of a spherical colloidal particle with a slip surface in a concentrated suspension on the basis of Kuwabara’s cell model. We introduce the slipping length on the particle surface, which is the measure of the particle surface hydrophobicity. We derive the general expression of the particle electrophoretic mobility and its approximate analytic expressions for a particle carrying a low zeta potential. Expressions for other electrokinetics, that is, electrical conductivity, sedimentation velocity, and potential in concentrated suspensions, are also derived. Furthermore, it is shown that as in the case of a dilute suspension, a similarity is found between the electrokinetics of charged spherical solid particles with a slip surface in a concentrated suspension and that for liquid drops.

Electrophoretic mobility of a sphere with a slip surface in a concentrated suspension

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    Google Scholar 

  2. Levine S, Neale GH (1974) The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis. J Colloid Interface Sci 47:520–529

    Google Scholar 

  3. Shilov VN, Zharkikh NI, Borkovskaya YB (1981) Theory of non-equilibrium electrosurface phenomena in concentrated disperse systems. I. Application of nonequilibrium thermodynamics to cell. Colloid J 43:434–438

    Google Scholar 

  4. Kozak MW, Davis EJ (1986) Electrokinetic phenomena in fibrous porous media. J Colloid Interface Sci 112:403–411

    CAS  Google Scholar 

  5. Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: I Thin electrical double layers. J Colloid Interface Sci 127:497–510

    CAS  Google Scholar 

  6. Kozak MW, Davis EJ (1989) Electrokinetics of concentrated suspensions and porous media: 2 Moderately thick electrical double layers. J Colloid Interface Sci 129:166–174

    CAS  Google Scholar 

  7. Ohshima H (1997) Electrophoretic mobility of spherical colloidal particles in concentrated suspensions. J Colloid Interface Sci 188:481–485

    CAS  Google Scholar 

  8. Ohshima H (1999) Electrokinetic phenomena in a concentrated dispersion of charged mercury drops. J Colloid Interface Sci 218:535–544

    CAS  PubMed  Google Scholar 

  9. Lee E, Chu J-W, Hsu J-P (1999) Electrophoretic mobility of a concentrated suspension of spherical particles. J Colloid Interface Sci 209:240–246

    CAS  PubMed  Google Scholar 

  10. Ohshima H (2000) Cell model calculation for electrokinetic phenomena in concentrated suspensions: an Onsager relation between sedimentation potential and electrophoretic mobility. Adv Colloid Interf Sci 88:1–18

    CAS  Google Scholar 

  11. Hsu J-P, Lee E, Yen F-Y (2000) Electrophoresis of concentrated spherical particles with a charge-regulated surface. J Chem Phys 112:6404–6410

    CAS  Google Scholar 

  12. Carrique F, Arroyo FJ, Delgado AV (2001) Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic Stern layer on electrophoresis and DC conductivity. J Colloid Interface Sci 243:351–361

    CAS  Google Scholar 

  13. Ding JM, Keh HJ (2001) The electrophoretic mobility and electric conductivity of a concentrated suspension of colloidal spheres with arbitrary double-layer thickness. J Colloid Interface Sci 236:180–193

    CAS  PubMed  Google Scholar 

  14. Carrique F, Arroyo FJ, Delgado AV (2002) Electrokinetics of concentrated suspensions of spherical colloidal particles with surface conductance, arbitrary zeta potential, and double-layer thickness in static electric fields. J Colloid Interface Sci 252:126–137

    CAS  PubMed  Google Scholar 

  15. Carrique F, Cuquejo J, Arroyo FJ, Jiménez ML, Delgado AV (2005) Influence of cell-model boundary conditions on the conductivity and electrophoretic mobility of concentrated suspensions. Adv Colloid Interf Sci 118:43–50

    CAS  Google Scholar 

  16. Zholkovskij EK, Masliyah JH, Shilov VN, Bhattacharjee S (2007) Electrokinetic phenomena in concentrated disperse systems: general problem formulation and spherical cell approach. Adv Colloid Interf Sci 134-135:279–321

    CAS  Google Scholar 

  17. von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428

    Google Scholar 

  18. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc R Soc London Ser A 133:106–129

    CAS  Google Scholar 

  19. Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364

    CAS  Google Scholar 

  20. O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626

    CAS  Google Scholar 

  21. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  22. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans II 79:1613–1628

    CAS  Google Scholar 

  23. van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  24. Hunter RJ (1989) Foundations of colloid science, vol 2. Oxford University Press, London/New York

    Google Scholar 

  25. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    CAS  Google Scholar 

  26. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    CAS  Google Scholar 

  27. Lyklema J (1995) Fundamentals of interface and colloid science, Solid-Liquid Interfaces, vol 2. Academic Press, New York

    Google Scholar 

  28. Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York

    Google Scholar 

  29. Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  30. Spasic A, Hsu J-P (2005) Finely dispersed particles. Micro-, nano-, atto-engineering. CRC Press, Boca Raton

    Google Scholar 

  31. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, Hoboken

    Google Scholar 

  32. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  33. Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60

    CAS  Google Scholar 

  34. Churaev NV, Ralston J, Sergeeva IP, Sobolev VD (2002) Electrokinetic properties of methylated quartz capillaries. Adv Colloid Interf Sci 96:265–278

    CAS  Google Scholar 

  35. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    CAS  Google Scholar 

  36. Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano-to microscales. Soft Matter 3:685–693

    CAS  PubMed  Google Scholar 

  37. Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503

    CAS  PubMed  Google Scholar 

  38. Kobayashi M (2020) An analysis on electrophoretic mobility of hydrophobic polystyrene particles with low surface charge density: effect of hydrodynamic slip. Colloid Polym Sci 298:1313–1318. https://doi.org/10.1007/s00396-020-04716-2

    Article  CAS  Google Scholar 

  39. Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Google Scholar 

  40. Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661

    CAS  PubMed  Google Scholar 

  41. Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605

    PubMed  Google Scholar 

  42. Gopmandal PP, Bhattacharyya SS, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082

    CAS  Google Scholar 

  43. Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996

    CAS  Google Scholar 

  44. Ohshima H (2020) Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298:151–156 Note that the curly braces are missing on the right-hand side of Eq. (45), which should be μ// = (εrεoζ/η){1+K1(κa)κΛ/K0(κa)}

    CAS  Google Scholar 

  45. Ohshima H (2020) Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 298:459–462

    CAS  Google Scholar 

  46. Ohshima H (2020) Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid Polym Sci. https://doi.org/10.1007/s00396-020-04741-1

Download references

Acknowledgments

I thank Dr. Partha P. Gopmandal of the National Institute of Technology Durgapru and Prof. Somnath Bhattacharyya of the Indian Institute of Technology Kharagpur for introducing me in the field of electrokinetics of a colloidal particle with a slip surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension. Colloid Polym Sci 298, 1679–1684 (2020). https://doi.org/10.1007/s00396-020-04755-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04755-9

Keywords

Navigation