Skip to main content
Log in

Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The theory of Watterson and White (J Chem Soc Faraday Trans II, 77: 1115, 1981) on the primary electroviscous effect in a dilute suspension of charged spherical colloidal particles in an electrolyte solution is extended to cover the case where liquid slip occurs on the particle surface on the basis of the Navier boundary condition suitable for a hydrophobic surface. The general expressions for the effective viscosity and the primary electroviscous coefficient of the suspension as well as their low-zeta potential approximate expressions are derived.

Primary electroviscous coefficient

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324:289–306 Einstein A (1911) Berichtigung zu meiner Arbeit “Eine neue Bestimmung der Moleküldimensionen”ibid 339: 591-592

    Google Scholar 

  2. Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc Roy Soc London Ser A 138:41–48

    CAS  Google Scholar 

  3. Booth F (1950) The electroviscous effect for suspensions of solid spherical particles. Proc R Soc A 203:533–551

    CAS  Google Scholar 

  4. Russel WB (1978) Bulk stresses due to deformation of the electrical double layer around a charged sphere. J Fluid Mech 85:673–683

    Google Scholar 

  5. Lever DA (1979) Large distortion of the electric double layer around a charged particle by a shear flow. J Fluid Mech 92:421–433

    Google Scholar 

  6. Sherwood DJ (1980) The primary electroviscous effect in a suspension of spheres. J Fluid Mech 101:609–629

    Google Scholar 

  7. Watterson IG, White LR (1981) Primary electroviscous effect in suspensions of charged spherical particles. J Chem Soc Faraday Trans II 77:1115–1128

    CAS  Google Scholar 

  8. Hinch EJ, Sherwood JD (1983) The primary electroviscous effect in a suspension of spheres with thin double layers. J Fluid Mech 132:337–347

    CAS  Google Scholar 

  9. Duhkin AS, van de Ven TGM (1993) A spherical particle surrounded by a thin double layer in a simple shear flow. J Colloid Interface Sci 158:85–95

    Google Scholar 

  10. Rubio-Hernández FJ, Ruiz-Reina E, Gómez-Merino AI (1998) The influence of a dynamic stern layer on the primary electroviscous effect. J Colloid Interface Sci 206:334–337

    PubMed  Google Scholar 

  11. Rubio-Hernández FJ, Ruiz-Reina E, Gómez-Merino AI (2000) Primary electroviscous effect with a dynamic Stern layer: low κa results. J Colloid Interface Sci 226:180–184

    PubMed  Google Scholar 

  12. Sherwood JD, Rubio-Hernández FJ, Ruiz-Reina E (2000) The primary electroviscous effect: thin double layers (⪢1) and a Stern layer. J Colloid Interface Sci 228:7–13

    PubMed  CAS  Google Scholar 

  13. Rubio-Hernández FJ, Ruiz-Reina E, Gómez-Merino AI (2001) The additional surface conductance: its role in the primary electroviscous effect. Colloids Surf A Physicochem Eng Asp 192:349–356

    Google Scholar 

  14. Rubio-Hernández FJ, Ruiz-Reina E, Gómez-Merino AI, Sherwood JD (2001) Rheology of a dilute suspension: analytical expression for the viscosity in the limit of low zeta-potentials. Rheol Acta 40:230–237

    Google Scholar 

  15. Natraj V, Chen SB (2002) Primary electroviscous effect in a suspension of charged porous spheres. J Colloid Interface Sci 251:200–207

    PubMed  CAS  Google Scholar 

  16. Ruiz-Reina E, Carrique F, Rubio-Hernández FJ, Gómez-Merino AI, García-Sánchez P (2003) Electroviscous effect of moderately concentrated colloidal suspensions. J Phys Chem B 107:9528–9534

    CAS  Google Scholar 

  17. Rubio-Hernández FJ, Carrique F, Ruiz-Reina E (2004) The primary electroviscous effect in colloidal suspensions. Adv Colloid Interf Sci 107:51–60

    Google Scholar 

  18. Ohshima H (2006) Primary electroviscous effect in a dilute suspension of charged mercury drops. Langmuir 22:2863–2869

    PubMed  CAS  Google Scholar 

  19. Ohshima H (2007) Primary electroviscous effect in a moderately concentrated suspension of charged spherical colloidal particles. Langmuir 23:12061–12066

    PubMed  CAS  Google Scholar 

  20. Ohshima H (2008) Primary electroviscous effect in a dilute suspension of soft particles. Langmuir 24:6453–6461

    PubMed  CAS  Google Scholar 

  21. Ohshima H (2009) Effective viscosity of a concentrated suspension of uncharged porous spheres. Colloids Surf A Physicochem Eng Asp 347:33–37

    CAS  Google Scholar 

  22. Ohshima H (2010) Effective viscosity of a concentrated suspension of uncharged spherical soft particles. Langmuir 26:6287–6294

    PubMed  CAS  Google Scholar 

  23. Mendoza CI (2011) Effective static and high-frequency viscosities of concentrated suspensions of soft particles. J Chem Phys 135:054904

    PubMed  Google Scholar 

  24. Khair AS, Star AG (2013) The bulk electroviscous effect. Rheol Acta 52:255–269

    CAS  Google Scholar 

  25. Sengupta R, Lynn M, Walker LM, Khair AS (2018) Effective viscosity of a dilute emulsion of spherical drops containing soluble surfactant. Rheol Acta 57:481–491

    CAS  Google Scholar 

  26. Prakash J, Sekhar GPR (2019) Effective viscosity of a concentrated suspension of composite porous spherical particles. Meccanica 54:799–813

    Google Scholar 

  27. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc Roy Soc London Ser A 133:106–129

    CAS  Google Scholar 

  28. Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364

    CAS  Google Scholar 

  29. Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc Roy Soc London Ser A 203:514–533

    CAS  Google Scholar 

  30. Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloidn Zh 32:360–368

    CAS  Google Scholar 

  31. Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and Colloid Science, vol 2. John Wiley & Sons, Hoboken, pp 273–336

    Google Scholar 

  32. O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626

    Google Scholar 

  33. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  34. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans II 79:1613–1628

    CAS  Google Scholar 

  35. van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York

    Google Scholar 

  36. Hunter RJ (1989) Foundations of colloid science, Vol 2. Oxford University Press, London/New York

    Google Scholar 

  37. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134

    CAS  Google Scholar 

  38. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271

    CAS  Google Scholar 

  39. Lyklema J (1995) Fundamentals of interface and colloid science, solid-liquid interfaces, Vol 2. Academic Press, New York

    Google Scholar 

  40. Delgado AV (ed) (2000) Electrokinetics and Electrophoresis. Dekker, New York

    Google Scholar 

  41. Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam

    Google Scholar 

  42. Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. micro-. nano-, atto-engineering. CRC Press, Boca Raton

    Google Scholar 

  43. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons, Hoboken

    Google Scholar 

  44. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam

    Google Scholar 

  45. Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken

    Google Scholar 

  46. Vinogradova O (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56:31–60

    CAS  Google Scholar 

  47. Churaev NV, Ralston J, Sergeeva IP, Sobolev VD (2002) Electrokinetic properties of methylated quartz capillaries. Adv Colloid Interf Sci 96:265–278

    CAS  Google Scholar 

  48. Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    CAS  Google Scholar 

  49. Bocquet L, Barrat J-L (2007) Flow boundary conditions from nano-to microscales. Soft Matter 3:685–693

    PubMed  CAS  Google Scholar 

  50. Bouzigues CI, Tabeling P, Bocquet L (2008) Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys Rev Lett 101:114503

    PubMed  CAS  Google Scholar 

  51. Khair AS, Squires TM (2009) The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys Fluids 21:042001

    Google Scholar 

  52. Park HM (2013) Electrophoresis of particles with Navier velocity slip. Electrophoresis 34:651–661

    PubMed  CAS  Google Scholar 

  53. Bhattacharyya S, Majee PS (2017) Electrophoresis of a polarizable charged colloid with hydrophobic surface: a numerical study. Phys Rev E 95:042605

    PubMed  Google Scholar 

  54. Gopmandal PP, Bhattacharyya S, Ohshima H (2017) On the similarity between the electrophoresis of a liquid drop and a spherical hydrophobic particle. Colloid Polym Sci 295:2077–2082

    CAS  Google Scholar 

  55. Kumar B, Gopmandal PP, Sinha RK, Ohshima H (2019) Electrophoresis of hydrophilic/hydrophobic rigid colloid with effects of relaxation and ion size. Electrophoresis 40:1282–1292

    PubMed  CAS  Google Scholar 

  56. Ohshima H (2019) Electrokinetic phenomena in a dilute suspension of spherical solid colloidal particles with a hydrodynamically slipping surface in an aqueous electrolyte solution. Adv Colloid Interf Sci 272:101996

    CAS  Google Scholar 

  57. Ohshima H (2019) Electrophoretic mobility of a cylindrical colloidal particle with a slip surface. Colloid Polym Sci 298:151–156 Note that the curly braces are missing on the right-hand side of Eq. (45), which should be μ// = (εrεoζ/η){1 + K1(κa)κΛ/K0(κa)}

    Google Scholar 

  58. Ohshima H (2020) Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 298:459–462

    CAS  Google Scholar 

  59. Lamb H (1975) Hydrodynamics. Cambridge University Press

  60. Luo H, Pozrikidis C (2008) Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall. J Eng Math 62:1–21

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Partha P. Gopmandal of the National Institute of Technology Durgapur and Prof. Somnath Bhattacharyya of Indian Institute of Technology Kharagpur for introducing me to the field of electrokinetics of colloidal particles with a slip surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohshima.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohshima, H. Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid Polym Sci 298, 1551–1557 (2020). https://doi.org/10.1007/s00396-020-04741-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04741-1

Keywords

Navigation