Skip to main content
Log in

Effect of molecular weight and diffusivity on the adsorption of PEO-PPO-PEO block copolymers at PTFE-water and oil-water interfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The diffusion and adsorption behaviors of a few PEO-PPO-PEO type triblock copolymers, namely, Pluronics® L62, L64, F68, F87, and F88 at solid-liquid and liquid-liquid interfaces is investigated using water penetration through packed PTFE powder, dynamic surface tension (DST), interfacial tension (IFT), dynamic light scattering (DLS), and contact angle measurements. The water penetration and DST data reveal that the diffusivity of these block copolymers to the interface decreases with increase in the PEO molecular weight of the polymer and is governed by adsorption of surfactant molecules at the interface through PPO blocks. The DST and IFT results reveal faster diffusion to the interface for low molecular L62 and L64. The adsorption behaviors at isopropyl myristate (IPM)-water and PTFE-water interfaces are in good agreement, where lower molecular weight and lower PEO content favor the faster diffusion kinetics. The size of the formed emulsion droplets in presence of different surfactant molecules is measured using DLS, which shows bigger emulsion droplet size for high molecular weight and PEO containing polymer F88. Thus, it was found that surfactant having lower DST will result in higher wettability, lower contact angle, and lower interfacial tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Somasundaran P (2006) Encyclopedia of surface and colloid science. Vol-2. CRC press, Boca Raton

    Google Scholar 

  2. Tarcha P (1990) Polymers for controlled drug delivery. CRC press, Boca Raton

    Google Scholar 

  3. Zhihao Y, Ravi S, Jettrey IH (2002) Continuous ink jet printing process, US 6364469

  4. Jun Loh X (2016) Polymers for personal care products and cosmetics. Vol. 20. Royal Society of Chemistry, London

    Google Scholar 

  5. Kabanov AV, Lemieux P, Vinogradov S, Alakhov V (2002) Pluronic block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 54:223–233

    Article  CAS  PubMed  Google Scholar 

  6. Chu B, Zhou Z (1996) Phys Chem of polyoxyalkylene block copolymer surfactants. In: Nace VM (ed) Nonionic surfactants: polyoxyalkylene block copolymers. Marcel Dekker, New York, pp 67–143

    Google Scholar 

  7. Liu X, Wu D, Turgman-Cohen S, Genzer J, Theyson TW, Rojas OJ (2010) Adsorption of a nonionic symmetric triblock copolymer on surfaces with different hydrophobicity. Langmuir 26:9565–9574

    Article  CAS  PubMed  Google Scholar 

  8. Nelson A, Cosgrove T (2005) Small-angle neutron scattering study of adsorbed pluronic tri-block copolymers on laponite. Langmuir 21:9176–9182

    Article  CAS  PubMed  Google Scholar 

  9. Liou YB, Tsay RY (2011) Adsorption of PEO-PPO-PEO triblock copolymers on a gold surface. J Taiwan Inst Chem Eng 42:533–540

    Article  CAS  Google Scholar 

  10. Li Y, Liu H, Song J, Rojas OJ, Hinestroza JP (2011) Adsorption and association of a symmetric PEO-PPO-PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces. ACS Appl Mater Interface 3:2349–2357

    Article  CAS  Google Scholar 

  11. Nejadnik MR, Olsson ALJ, Sharma PK, Van Der Mei HC, Norde W, Busscher HJ (2009) Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir 25:6245–6249

    Article  CAS  PubMed  Google Scholar 

  12. Au SH, Kumar P, Wheeler AR (2011) A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. Langmuir 27:8586–8594

    Article  CAS  PubMed  Google Scholar 

  13. Alexandridis P, Tsianou M (2011) Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur Polym J 47:569–583

    Article  CAS  Google Scholar 

  14. Ramírez P, Stocco A, Muñoz J, Miller R (2012) Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface. J Colloids Interface Sci 378:135–143

    Article  CAS  Google Scholar 

  15. Pérez-Mosqueda LM, Maldonado-Valderrama J, Ramírez P, Cabrerizo-Vílchez MA, Muñoz J (2013) Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces. Col Surf B Biointerface 111:171–178

    Article  CAS  Google Scholar 

  16. Shah V, Bharatiya B, Shah DO, Mukherjee T (2015) Correlation of dynamic surface tension with sedimentation of PTFE particles and water penetration in powders. Langmuir 31:13725–13733

    Article  CAS  PubMed  Google Scholar 

  17. Bonfillon A, Sicoli F, Langevin D (1994) Dynamic surface tension of ionic surfactant solutions. J Colloids Interface Sci. 168:497–504

    Article  CAS  Google Scholar 

  18. Rosen MJ (2004) Surfactants and interfacial phenomena. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  19. Eastoe JUU, Dalton JSS (2000) Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv Colloids Interface Sci 85:103–144

    Article  CAS  Google Scholar 

  20. Patist A, Oh SG, Leung R, Shah DO (2001) Kinetics of micellization: its significance to technological processes, in: Colloids and Surfaces, Elsevier Science Publishers BV, pp. 3–16

  21. Buckton G, Machiste E (1997) Differences between dynamic and equilibrium surface tension of poly (oxyethylene)–poly (oxypropylene)–poly (oxyethylene) block copolymer surfactants (poloxamers). J Pharm Sci 86:163–166

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Zhao Y, Li Q, Niu J (2016) Surface tension, interfacial tension and emulsification of sodium dodecyl sulfate extended surfactant. Colloids Surf. A Physicochem. Eng. Asp. 494:201–208

    Article  CAS  Google Scholar 

  23. Joos P, Rillaerts E (1981) Theory on the determination of the dynamic surface tension with the drop volume and maximum bubble pressure methods. J Colloid Interface Sci 79:96–100

    Article  CAS  Google Scholar 

  24. Chaudhuri RG, Paria S (2009) Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes. J Colloids Interface Sci 337:555–562

    Article  CAS  Google Scholar 

  25. Shah V, Bharatiya B, Shukla A, Shah DO, Mukherjee T (2016) Adsorption of nonionic Brij and Tween surfactants at PTFE-water and air-water interfaces: investigations on wetting, dispersion stability, foaming and drug solubilization. Colloids Surf A Physicochem Eng Asp 508:159–166

    Article  CAS  Google Scholar 

  26. Standnes DC, Austad T (2002) Wettability alteration in chalk 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants. J Pet Sci Eng 28:123–143

    Article  Google Scholar 

  27. Kiss É, Erdélyi K, Szendrö I, Vargha-Butler EI (2004) Adsorption and wetting properties of pluronic block copolymers on hydrophobic surfaces studied by optical waveguide lightmode spectroscopy and dynamic tensiometric method. J Adhes 80:815–829

    Article  CAS  Google Scholar 

  28. Zdziennicka A, Szymczyk K, Jan B (2009) Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic , anionic and cationic surfactants. J Colloids Interface Sci 340:243–248

    Article  CAS  Google Scholar 

  29. Biswal NR, Paria S (2012) Wetting of PTFE and glass surfaces by aqueous solutions of cationic and anionic double-chain surfactants. Ind Eng Chem Res 51:10172–10178

    Article  CAS  Google Scholar 

  30. Zhou ZH, Zhang Q, Wang HZ, Xu ZC, Zhang L, Liu DD, Zhang L (2016) Wettability of a PTFE surface by aqueous solutions of zwitterionic surfactants: effect of molecular structure. Colloids Surf. A Physicochem. Eng. Asp. 489:370–377

    Article  CAS  Google Scholar 

  31. Ngan KH, Ioannou K, Rhyne LD, Angeli P (2011) Effect of glycerol addition on phase inversion in horizontal dispersed oil-water pipe flows. Exp. Thermal Fluid Sci 35:628–635

    Article  CAS  Google Scholar 

  32. Rahn-Chique K, Urbina-Villalba G (2017) Dependence of emulsion stability on particle size: relative importance of drop concentration and destabilization rate on the half lifetimes of O/W nanoemulsions. J Disp Sci Technol 38:167–179

    Article  CAS  Google Scholar 

  33. Takamura K, Fischer H, Morrow NR (2012) Physical properties of aqueous glycerol solutions. J Pet Sci Eng 99:50–60

    Article  CAS  Google Scholar 

  34. Kale NJ, Allen LV (1989) Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants. Int J Pharm 57:87–93

    Article  CAS  Google Scholar 

  35. Bak A, Podgarska W (2016) Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf. A Physicochem. Eng. Asp. 504:414–425

    Article  CAS  Google Scholar 

  36. Kronberg B, Holmberg K, Lindman B (2014) Surface chemistry of surfactants and polymers. John Wiley & Sons, Inc, Chichester

    Book  Google Scholar 

  37. Zana R (2015) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases (Vol. 125). CRC press, Boca Raton

    Google Scholar 

  38. Sharma M, Bharatiya B, Mehta K, Shukla A, Shah DO (2014) Novel strategy involving surfactant-polymer combinations for enhanced stability of aqueous teflon dispersions. Langmuir 30:7077–7084

    Article  CAS  PubMed  Google Scholar 

  39. Chappat M (1994) Some applications of emulsions. Colloids Surf. A Physicochem. Eng. Asp. 91:57–77

    Article  CAS  Google Scholar 

  40. Driscoll DF (2002) The significance of particle/globule-sizing measurements in the safe use of intravenous lipid emulsions. J. Dispers. Sci. Technol. 23:679–687

    Article  CAS  Google Scholar 

  41. Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, Martín-Rodríguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll 23:1096–1102

    Article  CAS  Google Scholar 

  42. Silva PS, Zhdanov S, Starov VM, Holdich RG (2016) Spontaneous emulsification of water in oil at appreciable interfacial tensions. Colloids Surf. A Physicochem. Eng. Asp. 521:141–146

    Article  CAS  Google Scholar 

  43. Magdassi S, Frank SG (1990) Formation of oil in glyceroivwater emulsions: effect of surfactant ethylene oxide content. J. Dispers. Sci. Technol. 11:519–528

    Article  CAS  Google Scholar 

  44. Lopes JR, Loh W (1998) Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide-propylene oxide-ethylene oxide block copolymers in water. Langmuir 14:750–756

    Article  CAS  Google Scholar 

  45. Gotchev G, Kolarov T, Khristov K, Exerowa D (2011) Electrostatic and steric interactions in oil-in-water emulsion films from Pluronic surfactants. Adv. Colloid Interface Sci 168:79–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.S. and B.B. thank the Department of Science and Technology (DST), New Delhi, India, for a research grant in form of DST-Fast Track project no. SB/FT/CS-080/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhi Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, V., Bharatiya, B. & Shah, D.O. Effect of molecular weight and diffusivity on the adsorption of PEO-PPO-PEO block copolymers at PTFE-water and oil-water interfaces. Colloid Polym Sci 296, 1333–1340 (2018). https://doi.org/10.1007/s00396-018-4346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4346-3

Keywords

Navigation