Skip to main content
Log in

Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Our hypothesis introduced (i) Tilia sp. leachate as the basic platform for Ag-AgCl nanoparticle phytosynthesis as a new bionanotechnological protocol, (ii) determination of Ag-AgCl colloidal properties during periodic temperature changes and (iii) confirmation of formed colloid as an active and fundamental catalytic tool for degradation of organic pollutants. Easy-to-prepare Tilia sp. leachate was mixed with silver precursor to form the Ag-AgCl nanoparticle system. We used SEM and FTIR to determine Tilia matrix organic/inorganic compounds and then performed STEM, ICP-MS, UV/VIS and XRD analysis to phytosynthesize Ag-AgCl nanoparticles. We confirmed that Tilia sp. leachate contained specific biomolecules with nanoparticle synthesis potential. Colloidal Ag-AgCl nanoparticles revealed dominant spherical morphology with uniform mean diameter from 14 to 16 nm. There were no significant differences observed in ζ-potential, ionic strength, hydrodynamic dimension or pH value during 5 weeks with periodic temperature changes, thus confirming stable colloidal properties. In addition, this specialized application of Ag-AgCl nanoparticles was performed by effective 4-nitrophenol catalysis at low Ag-AgCl NP concentration and very rapid reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Delalat B, Sheppard VC, Rasi Ghaemi S, Rao S, Prestidge CA, McPhee G, Rogers M-L, Donoghue JF, Pillay V, Johns TG, Kroger N, Voelcker NH (2015) Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 6. https://doi.org/10.1038/ncomms9791

  2. Li W, Reátegui E, Park M-H, Castleberry S, Deng JZ, Hsu B, Mayner S, Jensen AE, Sequist LV, Maheswaran S, Haber DA, Toner M, Stott SL, Hammond PT (2015) Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials 65:93–102. https://doi.org/10.1016/j.biomaterials.2015.06.036

    Article  CAS  Google Scholar 

  3. Konvičková Z, Laššák O, Kratošová G, Škrlová K, Holišová V (2017) Colloidal bio-nanoparticles in polymer fibers: current trends and future prospects. In: Rai PDM, Shegokar PDR (eds) Metal nanoparticles in pharma. Springer International Publishing, Cham, pp 279–294. https://doi.org/10.1007/978-3-319-63790-7_13

    Chapter  Google Scholar 

  4. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles—a review. Acta Biomaterialia 10(10):4023–4042. https://doi.org/10.1016/j.actbio.2014.05.022

    Article  Google Scholar 

  5. Abdelgawad AM, El-Naggar ME, Eisa WH, Rojas OJ (2017) Clean and high-throughput production of silver nanoparticles mediated by soy protein via solid state synthesis. J Cleaner Prod 144:501–510. https://doi.org/10.1016/j.jclepro.2016.12.122

    Article  CAS  Google Scholar 

  6. Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624. https://doi.org/10.1007/s00253-011-3249-8

    Article  CAS  Google Scholar 

  7. Kratošová G, Konvičková Z, Vávra I, Zapomělová E, Rai M, Schröfel A (2016) Noble metal nanoparticles synthesis mediated by the genus Dolichospermum: perspective of green approach in the nanoparticles preparation. Adv Sci Lett 22(3):637–641. https://doi.org/10.1166/asl.2016.6993

    Article  Google Scholar 

  8. Konvičková Z, Schröfel A, Kolenčík M, Dědková K, Peikertová P, Žídek M, Seidlerová J, Kratošová G (2016) Antimicrobial bionanocomposite–from precursors to the functional material in one simple step. J Nanopart Res 18(12). https://doi.org/10.1007/s11051-016-3664-y

  9. Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120. https://doi.org/10.1007/s10529-015-1901-6

    Article  CAS  Google Scholar 

  10. Kolenčík M, Urík M, Čaplovičová M (2014) Unexpected formation of Ag2SO4 microparticles from Ag2S nanoparticles synthesised using poplar leaf extract. Environ Chem Lett 12(4):551–556. https://doi.org/10.1007/s10311-014-0484-0

    Article  Google Scholar 

  11. Zayed MF, Eisa WH, Shabaka AA (2012) Malva Parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 98:423–428. https://doi.org/10.1016/j.saa.2012.08.072

    Article  CAS  Google Scholar 

  12. Matsuda H, Ninomiya K, Shimoda H, Yoshikawa M (2002) Hepatoprotective principles from the flowers of Tilia Argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorg Med Chem 10(3):707–712

    Article  CAS  Google Scholar 

  13. Oniszczuk A, Podgórski R (2015) Influence of different extraction methods on the quantification of selected flavonoids and phenolic acids from Tilia Cordata inflorescence. Ind Crop Prod 76:509–514. https://doi.org/10.1016/j.indcrop.2015.07.003

    Article  CAS  Google Scholar 

  14. Aguirre-Hernández E, González-Trujano ME, Martínez AL, Moreno J, Kite G, Terrazas T, Soto-Hernández M (2010) HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia Americana Var. Mexicana. J Ethnopharmacol 127(1):91–97. https://doi.org/10.1016/j.jep.2009.09.044

    Article  Google Scholar 

  15. Herrera-Ruiz M, Román-Ramos R, Zamilpa A, Tortoriello J, Jiménez-Ferrer JE (2008) Flavonoids from Tilia Americana with anxiolytic activity in plus-maze test. J Ethnopharmacol 118(2):312–317. https://doi.org/10.1016/j.jep.2008.04.019

    Article  CAS  Google Scholar 

  16. Karioti A, Chiarabini L, Alachkar A, Fawaz Chehna M, Vincieri FF, Bilia AR (2014) HPLC–DAD and HPLC–ESI-MS analyses of Tiliae flos and its preparations. J Pharm Biomed Anal 100:205–214. https://doi.org/10.1016/j.jpba.2014.08.010

    Article  CAS  Google Scholar 

  17. Negri G, Santi D, Tabach R (2013) Flavonol glycosides found in hydroethanolic extracts from Tilia cordata, a species utilized as anxiolytics. Revista Brasileira de Plantas Medicinais 15:217–224

    Article  CAS  Google Scholar 

  18. Doane TL, Chuang CH, Hill RJ, Burda C (2012) Nanoparticle zeta-potentials. Acc Chem Res 45(3):317–326. https://doi.org/10.1021/ar200113c

    Article  CAS  Google Scholar 

  19. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554. https://doi.org/10.1021/cm100023p

    Article  CAS  Google Scholar 

  20. Rivera-Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, Zhao Y, de la Fuente JM, Ruiz de Larramendi I, Rojo T, Liang XJ, Parak WJ (2013) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46(3):743–749. https://doi.org/10.1021/ar300039j

    Article  CAS  Google Scholar 

  21. Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 11(96):20130931. https://doi.org/10.1098/rsif.2013.0931

    Article  Google Scholar 

  22. Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834. https://doi.org/10.1021/jp711616v

    Article  Google Scholar 

  23. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39(6):1909–1924

    Article  CAS  Google Scholar 

  24. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  Google Scholar 

  25. Holišová V, Urban M, Kolenčík M, Němcová Y, Schröfel A, Peikertová P, Slabotinský J, Kratošová G (2017) Biosilica-nanogold composite: easy-to-prepare catalyst for soman degradation. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.08.003

  26. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J Colloid Interface Sci 493(Supplement C):85–93. https://doi.org/10.1016/j.jcis.2017.01.012

    Article  CAS  Google Scholar 

  27. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interface Sci 497(Supplement C):33–42. https://doi.org/10.1016/j.jcis.2017.02.064

    Article  CAS  Google Scholar 

  28. Sajjadi M, Nasrollahzadeh M, Mohammad Sajadi S (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci 497(Supplement C):1–13. https://doi.org/10.1016/j.jcis.2017.02.037

    Article  CAS  Google Scholar 

  29. Zayed MF, Eisa WH, Abdel-Moneam YK, El-kousy SM, Atia A (2015) Ziziphus spina-christi based bio-synthesis of Ag nanoparticles. J Ind Eng Chem 23:50–56. https://doi.org/10.1016/j.jiec.2014.07.041

    Article  CAS  Google Scholar 

  30. Edison TJ, Sethuraman MG (2013) Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 104:262–264. https://doi.org/10.1016/j.saa.2012.11.084

    Article  CAS  Google Scholar 

  31. Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135(Supplement C):373–378. https://doi.org/10.1016/j.saa.2014.07.045

    Article  CAS  Google Scholar 

  32. Gangula A, Podila R, R M, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274. https://doi.org/10.1021/la2034559

    Article  Google Scholar 

  33. Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 121:238–244. https://doi.org/10.1016/j.saa.2013.10.092

    Article  CAS  Google Scholar 

  34. Loranty A, Rembiałkowska E, Rosa EAS, Bennett RN (2010) Identification, quantification and availability of carotenoids and chlorophylls in fruit, herb and medicinal teas. J Food Compos Anal 23(5):432–441. https://doi.org/10.1016/j.jfca.2010.01.007

    Article  CAS  Google Scholar 

  35. Sienkiewicz-Paderewska D, Dmuchowski W, Baczewska AH, Brągoszewska P, Gozdowski D (2017) The effect of salt stress on lime aphid abundance on Crimean linden (Tilia ‘Euchlora’) leaves. Urban For Urban Green 21(Supplement C):74–79. https://doi.org/10.1016/j.ufug.2016.11.010

    Article  Google Scholar 

  36. Andjelković M, Van Camp J, De Meulenaer B, Depaemelaere G, Socaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98(1):23–31. https://doi.org/10.1016/j.foodchem.2005.05.044

    Article  Google Scholar 

  37. Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788. https://doi.org/10.3390/ijerph7072745

    Article  CAS  Google Scholar 

  38. Ribeiro da Luz B (2006) Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol 172(2):305–318. https://doi.org/10.1111/j.1469-8137.2006.01823.x

    Article  CAS  Google Scholar 

  39. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196. https://doi.org/10.1016/S0022-2860(99)00389-0

    Article  Google Scholar 

  40. Silverstein RM, Webster TJ (1998) Spectrometric identification of organic compounds6th edn. John Wiley & Sons, New York, pp 71–143

    Google Scholar 

  41. Baset S, Akbari H, Zeynali H, Shafie M (2011) Size measurement of metal and semiconductor nanoparticles vis UV/VIS absorption spectra. Dig J Nanomater Biostruct 6(2):709–716

    Google Scholar 

  42. Hebeish A, El-Rafie MH, El-Sheikh MA, El-Naggar ME (2013) Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver. J Nanotechnol 2013:10. https://doi.org/10.1155/2013/201057

    Article  Google Scholar 

  43. Devi TB, Ahmaruzzaman M (2017) Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: a green and efficient approach for wastewater treatment. Chem Eng J 317:726–741. https://doi.org/10.1016/j.cej.2017.02.082

    Article  CAS  Google Scholar 

  44. Zhu Y, Liu H, Yang L, Liu J (2012) Study on the synthesis of Ag/AgCl nanoparticles and their photocatalytic properties. Mater Res Bull 47(11):3452–3458. https://doi.org/10.1016/j.materresbull.2012.07.005

    Article  CAS  Google Scholar 

  45. Lee YJ, Kim J, Oh J, Bae S, Lee S, Hong IS, Kim SH (2012) Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Environ Toxicol Chem 31(1):155–159. https://doi.org/10.1002/etc.717

    Article  CAS  Google Scholar 

  46. Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17(36):6809–6830. https://doi.org/10.1039/C5CE01014D

    Article  CAS  Google Scholar 

  47. Narayanan KB, Sakthivel N (2011) Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Bioresour Technol 102(22):10737–10740. https://doi.org/10.1016/j.biortech.2011.08.103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Pavlína Peikertová, PhD and Kateřina Mamulová Kutláková, PhD for FTIR and XRD analysis and their kind help.

Funding

This work was kindly supported by The Ministry of Education of the Czech Republic in Project Nos SP2018/50, SP2017/70 and SP2017/45 and the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences under contracts KEGA 014SPU4/2016 and VEGA 1/0164/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Konvičková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konvičková, Z., Holišová, V., Kolenčík, M. et al. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym Sci 296, 677–687 (2018). https://doi.org/10.1007/s00396-018-4290-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4290-2

Keywords

Navigation