Skip to main content
Log in

Identification of thermal shear bands in a low molecular weight polymer melt under oscillatory strain field

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We present real-time micro-thermal measurements of the response of viscous fluids (low molecular weight unentangled and entangled polymer melts) submitted to an oscillatory mechanical shear strain (in conditions of conventional viscoelastic measurements). We show that thermal changes occur at the early steps of the applied deformation. A succession of thermodynamic states is identified showing the formation of non-uniform temperature shear bands along the strain direction. These thermal shear bands indicate the coexistence of cold and warm zones appearing in phase with the deformation. The synchronism of the temperature variation with the mechanical strain reveals a reversible process of elastic type indicating that viscous liquids might exhibit thermoelastic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Volino F (1997) Théorie visco-élastique non-extensive. Ann Phys Fr 22(1-2):7–41. https://doi.org/10.1051/anphys:199701003

    Article  Google Scholar 

  2. Derjaguin BV, Bazaron UB, Zandanova KT, Budaev OR (1989) The complex shear modulus of polymeric and small-molecule liquids. Polymer 30(1):97–103. https://doi.org/10.1016/0032-3861(89)90389-3

    Article  Google Scholar 

  3. Derjaguin BV, Bazaron UB, Lamazhapova KD, Tsidypov BD (1990) Shear elasticity of low-viscosity liquids at low frequencies. Phys Rev A 42(4):2255–2258. https://doi.org/10.1103/PhysRevA.42.2255

    Article  CAS  Google Scholar 

  4. Hu HW, Granick S (1992) Viscoelastic dynamics of confined polymer melts. Science 258(5086):1339–1342. https://doi.org/10.1126/science.258.5086.1339

    Article  CAS  Google Scholar 

  5. Gee ML, McGuiggan PM, Israelachvili JN (1990) Liquid to solidlike transitions of molecularly thin films under shear. J Chem Phys 93(3):1895–1906. https://doi.org/10.1063/1.459067

    Article  CAS  Google Scholar 

  6. Collin D, Martinoty P (2003) Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Physica A 320:235–248. https://doi.org/10.1016/S0378-4371(02)01524-8

    Article  CAS  Google Scholar 

  7. Chushkin Y, Caronna C, Madsen A (2008) Low-frequency elastic behavior of a supercooled liquid. Europhys Lett 83:36001–36006

    Article  Google Scholar 

  8. Lv P, Yang Z, Hua Z, Li M, Lin M, Dong Z (2015) Measurement of viscosity of liquid in micro-crevice. Flow Meas Instrum 46:72–79. https://doi.org/10.1016/j.flowmeasinst.2015.08.007

    Article  Google Scholar 

  9. Mendil H, Baroni P, Noirez L (2006) Solid-like rheological response of non-entangled polymers in the molten state. Eur Phys J E 19:77–86

    Article  CAS  Google Scholar 

  10. Noirez L, Baroni P, Mendil-Jakani H (2009) The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers. Polym Int 58:962

    Article  CAS  Google Scholar 

  11. Noirez L, Baroni P (2010) Revealing the solid-like nature of glycerol at ambient temperature. J Mol Struct 972(1-3):16–21. https://doi.org/10.1016/j.molstruc.2010.02.013

    Article  CAS  Google Scholar 

  12. Noirez L, Mendil-Jakani H, Baroni P (2011) Identification of finite shear-elasticity in the liquid state of molecular (OTP) and polymeric glass formers (PBuA). Philos Mag 91(13-15):1977–1986. https://doi.org/10.1080/14786435.2010.536176

    Article  CAS  Google Scholar 

  13. Noirez L, Baroni P (2012) Identification of a low-frequency elastic behaviour in liquid water. J Phys Condens Matter 24(37):372101. https://doi.org/10.1088/0953-8984/24/37/372101

    Article  Google Scholar 

  14. Kahl P, Baroni P, Noirez L (2016) Bringing to light hidden elasticity in the liquid state using in-situ pretransitional liquid crystal swarms. PloS ONE 11(2):e0147914

    Article  Google Scholar 

  15. Granato AV (2009) Mechanical properties of simple condensed matter. Mater Sci Eng A 521-522(521):6–11. https://doi.org/10.1016/j.msea.2008.09.147

    Article  Google Scholar 

  16. Zaccone A, Blundell JR, Terentjev EM (2011) Network disorder and nonaffine deformations in marginal solids. Phys Rev B 84(17):174119–174111. https://doi.org/10.1103/PhysRevB.84.174119

    Article  Google Scholar 

  17. Boltamov D, Brazhkin VV, Trachenko K (2012) The phonon theory of liquid thermodynamics, Scientific Reports 2:421/srep00421

  18. Lv P, Yanga Z, Hua Z, Li M, Lin M, Dong Z (2016) Viscosity of water and hydrocarbon changes with micro-crevice thickness. Colloids Surf A: Physicochem Eng Asp 504:287–297. https://doi.org/10.1016/j.colsurfa.2016.05.083

    Article  CAS  Google Scholar 

  19. Lakrout H, Creton C, Ahn D, Shull KR (2001) Influence of molecular features on the tackiness of acrylic polymer melts. Macromolecules 34(21):7448–7458. https://doi.org/10.1021/ma0020279

    Article  CAS  Google Scholar 

  20. Thomson W (1853) On the dynamical theory of heat. Trans Roy Soc 20(02):261–283. https://doi.org/10.1017/S0080456800033172

    Article  Google Scholar 

  21. Thomson W (1878) On the thermoelastic, thermomagnetic and pyro-electric properties of matter. Phil Mag 5(28):4–27. https://doi.org/10.1080/14786447808639378

    Article  Google Scholar 

  22. Privalko VP, Korskanov VV (1999) Thermoelastic behaviour of amorphous polymers above and through the glass transition interval I. Polystyrene. J Therm Anal Calorim 55741

  23. Padmaja A (1996) Pressure dependence of the thermoelastic quotient for glasses. Int J Thermophysics 17(3):723–729. https://doi.org/10.1007/BF01441518

    Article  CAS  Google Scholar 

  24. Roszkowki Z (1981) Equations of state of polymer melts and temperature dependence of the number of external degrees of freedom in a macromolecule. Mat Chem 6(6):455–466. https://doi.org/10.1016/0390-6035(81)90020-1

    Article  Google Scholar 

  25. Baroni P, Bouchet P, Noirez L (2013) Highlighting a cooling regime in liquids under submillimeter flows. J Phys Chem Lett 4:2026−2029

    Article  Google Scholar 

  26. Heidenreich S, Ilg P, Hess S (2007) Boundary conditions for fluids with internal orientational degrees of freedom: apparent velocity slip associated with the molecular alignment. Phys Rev E 75:66302–66313

    Article  Google Scholar 

  27. Astarita G (1974) Thermodynamics of dissipative materials with entropic elasticity. Polym Eng Sci 14(10):730–733. https://doi.org/10.1002/pen.760141012

    Article  CAS  Google Scholar 

  28. Noirez L, Mendil-Jakani H, Baroni P (2009) New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts. Macromol Rapid Commun 30:1709–1714

    Article  CAS  Google Scholar 

  29. Watanabe H, Kanaya T, Takahashi Y (2007) Rheo-SANS behavior of entangled polymer chains with local label under fast shear flow. Experimental Reports 14 Report Number: 146

  30. Sasa LA, Yearley EJ, Jablin MS, Gilbertson RD, Lavine AS, Majewski J, Hjelm RP (2011) Shear-induced metastable states of end-grafted polystyrene. Phys Rev E 84(2):21803–21806. https://doi.org/10.1103/PhysRevE.84.021803

    Article  Google Scholar 

  31. Chennevière A, Cousin F, Boué F, Drockenmuller E, Shull KR, Léger L, Restagno F (2016) Direct molecular evidence of the origin of slip of polymer melts on grafted brushes. Macromolecules 49(6):2348–2353. https://doi.org/10.1021/acs.macromol.5b02505

    Article  Google Scholar 

  32. Han WH, Rey AD (1995) Theory and simulation of optical banded textures of nematic polymers during shear flow. Macromolecules 28(24):8401–8405. https://doi.org/10.1021/ma00128a059

    Article  CAS  Google Scholar 

  33. Pujolle-Robic C, Noirez L (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers. Nature 409(6817):167–171. https://doi.org/10.1038/35051537

    Article  CAS  Google Scholar 

  34. Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47(3):257–281. https://doi.org/10.1007/s00397-007-0245-0

    Article  CAS  Google Scholar 

  35. Callaghan PT, Kilfoil ML, Samulski ET (1988) Chain deformation for a polymer melt under shear. Phys Rev Lett 81:4524–4527

    Article  Google Scholar 

  36. Cerf R, Scheraga H (1952) Flow birefringence in solutions of macromolecules. Chem Revs 51:185

    Article  CAS  Google Scholar 

  37. Janeschitz-Kriegel H (1957) Polymer melt rheology and flow birefringence. J Polym Sci 23:181

    Article  Google Scholar 

  38. Metivier C, Rharbi Y, Magnin A, Bou Abboud A (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls. Soft Matter 8:7365–7367

    Article  Google Scholar 

  39. Trachenko K, Brazhkin VV (2016) Collective modes and thermodynamics of the liquid state. Rep. Prog. Phys. 79 016502-016538

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Noirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors are gratefull to Thierry Midaveine for stimulating discussions and acknowlegde the funding provide by the AAP2014 "Instrumentation aux limites" CNRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noirez, L., Baroni, P. Identification of thermal shear bands in a low molecular weight polymer melt under oscillatory strain field. Colloid Polym Sci 296, 713–720 (2018). https://doi.org/10.1007/s00396-018-4264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4264-4

Keywords

Navigation