Skip to main content

Advertisement

Log in

Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Pt nanoparticle (NP) embedded polystyrene-b-poly(4-vinylpyridine) colloids (Pt@PS-b-PVP) are prepared through flash nanoprecipitation (FNP). Uniform Pt@PS-b-PVP nanocomposites with ~5 nm Pt NPs decorating the surface on PS-b-PVP nanospheres are easily prepared with tunable size and Pt arrangement. The catalytic chromium reduction property of Pt@PS-b-PVP is tested. The hybrid colloids exhibited excellent catalytic performance as well as tunable ability dependent on the fined-controlled nanostructure. Moreover, the reported nanocomposites are reused for four times without loss of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prabhakaran SK, Vijayaraghavan K, Balasubramanian R (2009) Removal of Cr(VI) ions by spent tea and coffee dusts: reduction to Cr(III) and biosorption. Ind Eng Chem Res 48:2113–2117

    Article  CAS  Google Scholar 

  2. Ruan ZH, Wu JH, Huang JF, Lin ZT, Li YF, Liu YL, Cao PY, Fang YP, Xie J, Jiang GB (2015) Facile preparation of rosin-based biochar coated bentonite for supporting α-Fe2O3 nanoparticles and its application for Cr(VI) adsorption. J Mater Chem A 3(8):4595–4603. https://doi.org/10.1039/C4TA06491G

    Article  CAS  Google Scholar 

  3. Sun L, Yuan Z, Gong W, Zhang L, Xu Z, Su G, Han D (2015) The mechanism study of trace Cr(VI) removal from water using Fe0 nanorods modified with chitosan in porous anodic alumina. Appl Surf Sci 328:606–613

    Article  CAS  Google Scholar 

  4. Zhang YC, Yao L, Zhang G, Dionysiou DD, Li J, Du X (2014) One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl Catal B Environ 144:730–738

    Article  CAS  Google Scholar 

  5. Sobol Z, Schiestl RH (2012) Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. Environ Mol Mutagen 53:94–100

    Article  CAS  Google Scholar 

  6. Elliott DW, Zhang WX (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  Google Scholar 

  7. Pantsar-Kallio M, Reinikainen SP, Oksanen M (2001) Interactions of soil components and their effects on speciation of chromium in soils. Anal Chim Acta 439:9–17

    Article  CAS  Google Scholar 

  8. Yadav M, Xu Q (2013) Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem Commun 49:3327–3329

    Article  CAS  Google Scholar 

  9. Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

  10. Vospernik M, Pintar A, Levec J (2006) Application of a catalytic membrane reactor to catalytic wet air oxidation of formic acid. Chem Eng Process 45:404–414

    Article  CAS  Google Scholar 

  11. Omole MA, K’Owino IO, Sadik OA (2007) Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl Catal B Environ 76:158–167

    Article  CAS  Google Scholar 

  12. Saikia H, Borah BJ, Yamada Y, Bharali P (2017) Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. J Colloid Interface Sci 486:46–57

    Article  CAS  Google Scholar 

  13. Liu H, Yu Y, Yang W, Lei W, Gao M, Guo S (2017) High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nano 9:9305–9309

    CAS  Google Scholar 

  14. Borah BJ, Saikia H, Bharali P (2014) Reductive conversion of Cr(VI) to Cr(III) over bimetallic CuNi NPs at room temperature. New J Chem 38:2748

    Article  CAS  Google Scholar 

  15. Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, Zhu M, Shi X (2012) Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl Mater Inter 4:3054–3061

    Article  CAS  Google Scholar 

  16. Zhang C, Zhang R, He S, Li L, Wang X, Liu M, Chen W (2017) 4-nitrophenol reduction by a single platinum palladium nanocube caged within a nitrogen-doped hollow carbon nanosphere. ChemCatChem 9(6):980–986. https://doi.org/10.1002/cctc.201601364

    Article  CAS  Google Scholar 

  17. Bhowmik K, Mukherjee A, Mishra MK, De G (2014) Stable Ni nanoparticle-reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 30(11):3209–3216. https://doi.org/10.1021/la500156e

    Article  CAS  Google Scholar 

  18. Mai Z, Hu Y, Huang P, Zhang X, Dong X, Fang Y, Wu C, Cheng J, Zhou W (2017) Outside-in stepwise bi-functionalization of magnetic mesoporous silica incorporated with Pt nanoparticles for effective removal of hexavalent chromium. Powder Technol 312:48–57. https://doi.org/10.1016/j.powtec.2017.02.028

    Article  CAS  Google Scholar 

  19. Baikousi M, Bourlinos AB, Douvalis A, Bakas T, Anagnostopoulos DF, Tucek J, Safarova K, Zboril R, Karakassides MA (2012) Synthesis and characterization of gamma-Fe2O3/carbon hybrids and their application in removal of hexavalent chromium ions from aqueous solutions. Langmuir 28(8):3918–3930. https://doi.org/10.1021/la204006d

    Article  CAS  Google Scholar 

  20. Beheshti H, Irani M, Hosseini L, Rahimi A, Aliabadi M (2016) Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chem Eng J 284:557–564

    Article  CAS  Google Scholar 

  21. Liu R, Priestley RD (2016) Rational design and fabrication of core-shell nanoparticles through a one-step/pot strategy. J Mater Chem A 4(18):6680–6692. https://doi.org/10.1039/C5TA09607C

    Article  CAS  Google Scholar 

  22. Liu R, Qu F, Guo Y, Yao N, Priestley RD (2014) Au@carbon yolk-shell nanostructures via one-step core-shell-shell template. Chem Commun 50(4):478–480. https://doi.org/10.1039/C3CC47050D

    Article  CAS  Google Scholar 

  23. Liu R, Yeh YW, Tam VH, Qu F, Yao N, Priestley RD (2014) One-pot Stöber route yields template for Ag@carbon yolk-shell nanostructures. Chem Commun 50(65):9056–9059. https://doi.org/10.1039/C4CC02507E

    Article  CAS  Google Scholar 

  24. Zhang C, Pansare VJ, Prud’homme RK, Priestley RD (2012) Flash nanoprecipitation of polystyrene nanoparticles. Soft Matter 8:86–93

    Article  CAS  Google Scholar 

  25. Kumar V, Adamson DH, Prud’homme RK (2010) Fluorescent polymeric nanoparticles: aggregation and phase behavior of pyrene and amphotericin B molecules in nanoparticle cores. Small 6:2907–2914

    Article  CAS  Google Scholar 

  26. Sosa C, Liu R, Tang C, Qu F, Niu S, Bazant MZ, Prud’homme RK, Priestley RD (2016) Soft multifaced and patchy colloids by constrained volume self-assembly. Macromolecules 49:3580–3585

    Article  CAS  Google Scholar 

  27. Zhu Z, Anacker JL, Ji S, Hoye TR, Macosko CW, Prud’homme RK (2007) Formation of block copolymer-protected nanoparticles via reactive impingement mixing. Langmuir 23:10499–10504

    Article  CAS  Google Scholar 

  28. Pinkerton NM, Grandeury A, Fisch A, Brozio J, Riebesehl BU, Prud’homme RK (2013) Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation. Mol Pharm 10:319–328

    Article  CAS  Google Scholar 

  29. Liu R, Sosa C, Yeh Y-W, Qu F, Yao N, Prud’homme RK, Priestley RD (2014) A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation. J Mater Chem A 2:17286–17290

    Article  CAS  Google Scholar 

  30. He Y, Wang B, Hu X, Zhang X, Sun L, Priestley RD, Liu R (2017) One-step constrained-volume synthesis of silver decorated polymer colloids with antimicrobial and sensing properties. Colloid Polym Sci 295:521–527

    Article  CAS  Google Scholar 

  31. Johnson BK, Prud’homme RK (2003) Chemical processing and micromixing in confined impinging jets. Aiche J 49:2264–2282

    Article  CAS  Google Scholar 

  32. Han J, Zhu Z, Qian H, Wohl AR, Beaman CJ, Hoye TR, Macosko CW (2012) A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci 101(10):4018–4023. https://doi.org/10.1002/jps.23259

    Article  CAS  Google Scholar 

  33. Zhu Z (2014) Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm 11(3):776–786. https://doi.org/10.1021/mp500025e

    Article  CAS  Google Scholar 

  34. Johnson BK, Prud’homme RK (2003) Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 91:118302. https://doi.org/10.1103/PhysRevLett.91.118302

    Article  Google Scholar 

  35. Pustulka KM, Wohl AR, Lee HS, Michel AR, Han J, Hoye TR, McCormick AV, Panyam J, Macosko CW (2013) Flash nanoprecipitation: particle structure and stability. Mol Pharm 10:4367–4377

    Article  CAS  Google Scholar 

  36. Zhu Z (2013) Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability. Biomaterials 34(38):10238–10248. https://doi.org/10.1016/j.biomaterials.2013.09.015

    Article  CAS  Google Scholar 

  37. Goksu H, Yıldız Y, Çelik B, Yazici M, Kilbas B, Sen F (2016) Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol 6:2318–2324

    Article  CAS  Google Scholar 

  38. Dandapat A, Huang Y, Gnayem H, Sasson Y (2017) Bismuth oxyhalide induced growth of Pt nanoparticles within mesoporous alumina films and their use as reusable catalyst for chromium(VI) reduction. ChemistrySelect 2(2):620–623. https://doi.org/10.1002/slct.201601399

    Article  CAS  Google Scholar 

  39. Zhu Z, Margulis-Goshen K, Magdassi S, Talmon Y, Macosko CW (2010) Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with beta-carotene. J Pharm Sci 99(10):4295–4306. https://doi.org/10.1002/jps.22090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.L. acknowledges the National Natural Science Foundation of China (No. 21774095), the start-up funding from Tongji University, and the Young Thousand Talented Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 4684kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sun, L. & Liu, R. Flash nanoprecipitation of polymer supported Pt colloids with tunable catalytic chromium reduction property. Colloid Polym Sci 296, 327–333 (2018). https://doi.org/10.1007/s00396-017-4231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4231-5

Keywords

Navigation