Skip to main content
Log in

One-step constrained-volume synthesis of silver decorated polymer colloids with antimicrobial and sensing properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, we report a simple and low-energy strategy for the preparation of silver decorated polymer colloids. The reported constrained-volume synthesis integrates polymer nanoprecipitation and metal deposition in a one-step continuous-flow fashion. The deposition of Ag nanoparticles (NPs) associated with different optical properties is easily controlled by varying processing parameters. The as-synthesized colloidal NPs have good antimicrobial properties. In addition, the sensitivity of the colloids towards hydrogen peroxide exhibits a linear response over a wide concentration range with a detection limit of 0.03 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu Y, Chen L, Wang X, Yao W, Zhang Q (2015) Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7:10559–10583

    Article  CAS  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  3. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  4. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148

    Article  CAS  Google Scholar 

  5. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  6. Prabhu S, Eldho KP (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity. Effects Int Nano Lett 2:32

    Article  Google Scholar 

  7. Tian J, Liu R, Wang G, Xu Y, Wang X, Yu H (2014) Dependence of metallic Ag on the photocatalytic activity and photoinduced stability of Ag/AgCl photocatalyst. Appl Surf Sci 319:324–331

    Article  CAS  Google Scholar 

  8. Zhang Q, Ge J, Pham T, Goebl J, Hu Y, Lu Z, Yin Y (2009) Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed 48:3516–3519

    Article  CAS  Google Scholar 

  9. Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y (2012) Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew Chem Int Ed 51:5629–5633

    Article  CAS  Google Scholar 

  10. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  11. Salam N, Banerjee B, Roy AS, Mondal P, Roy S, Bhaumik A, Islam SM (2014) Silver nanoparticles embedded over mesoporous organic polymer as highly efficient and reusable nanocatalyst for the reduction of nitroarenes and aerobic oxidative esterification of alcohols. Appl Catal A 477:184–194

    Article  CAS  Google Scholar 

  12. Sarkar S, Guibal E, Quignard F, SenGupta A (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14:1–24

    Article  Google Scholar 

  13. Sahiner N (2013) Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 38:1329–1356

    Article  CAS  Google Scholar 

  14. Farah AA, Alvarez-Puebla RA, Fenniri H (2008) Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 319:572–576

    Article  CAS  Google Scholar 

  15. Lu Y, Mei Y, Schrinner M, Ballauff M, Moller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681

    Article  CAS  Google Scholar 

  16. Lu Y, Yu M, Drechsler M, Ballauff M (2007) Ag nanocomposite particles: preparation, characterization and application. Macromol Symp 254:97–102

    Article  CAS  Google Scholar 

  17. Liu R, Priestley RD (2016) Rational design and fabrication of core-shell nanoparticles through a one-step/pot strategy. J Mater Chem A 4:6680–6692

    Article  CAS  Google Scholar 

  18. Yang P, Xu Y, Chen L, Wang X, Zhang Q (2015) One-pot synthesis of monodisperse noble metal@ resorcinol-formaldehyde (M@RF) and M@carbon core–shell nanostructure and their catalytic applications. Langmuir 31:11701–11708

    Article  CAS  Google Scholar 

  19. Liu R, Qu F, Guo Y, Yao N, Priestley RD (2014) Au@ carbon yolk-shell nanostructures via one-step core-shell-shell template. Chem Commun 50:478–480

    Article  CAS  Google Scholar 

  20. Liu R, Yeh YW, Tam VH, Qu F, Yao N, Priestley RD (2014) One-pot Stober route yields template for Ag@ carbon yolk-shell nanostructures. Chem Commun 50:9056–9059

    Article  CAS  Google Scholar 

  21. Liu R, Sosa C, Yeh YW, Qu F, Yao N, Prud'homme RK, Priestley RD (2014) A one-step and scalable production route to metal nanocatalyst supported polymer nanospheres via flash nanoprecipitation. J Mater Chem A 2:17286–17290

    Article  CAS  Google Scholar 

  22. He Y, Priestley RD, Liu R (2016) A one-step and scalable continuous-flow nanoprecipitation for catalytic reduction of organic pollutants in water. Ind Eng Chem Res 55:9851–9856

    Article  CAS  Google Scholar 

  23. Han J, Zhu Z, Qian H, Wohl AR, Beaman CJ, Hoye TR, Macosko CW (2012) A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci 101:4018–4023

    Article  CAS  Google Scholar 

  24. Saad WS, Prud’homme RK (2006) Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 11:212–227

    Article  Google Scholar 

  25. Johnson BK, Prud'homme RK (2003) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–10243

    Article  CAS  Google Scholar 

  26. Johnson BK, Prud'homme RK (2003) Chemical processing and micromixing in confined impinging jets. AICHE J 49:2264–2282

    Article  CAS  Google Scholar 

  27. Ma H, Geng Y, Lee YI, Hao J, Liu HG (2013) Free-standing poly (2-vinylpyridine) foam films doped with silver nanoparticles formed at the planar liquid/liquid interface. J Colloid Interface Sci 394:223–230

    Article  CAS  Google Scholar 

  28. Liu YJ, He LB, Xu CH, Han M (2009) Photochemical fabrication of hierarchical Ag nanoparticle arrays from domain-selective Ag + −loading on block copolymer templates. Chem Commun 6566–6568

  29. Zhang C, Pansare VJ, Prud'homme RK, Priestley RD (2012) Flash nanoprecipitation of polystyrene nanoparticles. Soft Matter 8:86–93

    Article  CAS  Google Scholar 

  30. Sosa C, Liu R, Tang C, Qu F, Niu S, Bazant M, Prud'homme RK, Priestley RD (2016) Soft multi-faced and patchy colloids by constrained volume self-assembly. Macromolecules 49:3580–3585

    Article  CAS  Google Scholar 

  31. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 83:16–22

    Article  CAS  Google Scholar 

  32. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  33. Zhang Z, Wu Y, Wang Z, Zou X, Zhao Y, Sun L (2016) Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Mater Sci Eng C 69:462–469

    Article  CAS  Google Scholar 

  34. Lee EM, Lee HW, Park JH, Han YA, Ji BC, Oh WT, Deng YL, Yeum JH (2008) Multihollow structured poly (methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents. Colloid Polymer Sci 286:1379–1385

    Article  CAS  Google Scholar 

  35. de Faria AF, Martinez DST, Meira SMM, de Moraes ACM, Brandelli A, Filho AGS, Alves OL (2014) Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124

    Article  Google Scholar 

  36. Vimala K, Murali Mohana Y, Samba Sivudua K, Varaprasada K, Ravindraa S, Narayana Reddya N, Padmab Y, Sreedharc B, Mohana Rajua K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloid Surf B 76:248–258

    Article  CAS  Google Scholar 

  37. Filippo E, Serra A, Manno D (2009) Poly (vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensors Actuators B Chem 138:625–630

    Article  CAS  Google Scholar 

  38. Tagad C, Dugasani S, Aiyer R, Park S, Kulkarni A, Sabharwal S (2013) Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuator B 183:144–149

    Article  CAS  Google Scholar 

  39. Vasileva P, Donkova B, Karadjova I, Dushkin C (2011) Synthesis of starch-stabilized silver nanoparticles and their application as surface plasmon resonance based-sensor of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 382:203–210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.L. acknowledges the start-up funding from Tongji University and the Young Thousand Talented Program. Y.H. acknowledges the support of the National Younger Natural Science Foundation of China (21405004) and PhD Research Startup Funds of Anhui Normal University (2014bsqdjj43). R.D.P. acknowledges the support of the National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials (DMR-1420541) and the usage of the PRISM Imaging and Analysis Center at Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yuezhen He and Baojuan Wang equally contributed to this work.

Electronic supplementary material

ESM 1

(DOCX 1024 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, B., Hu, X. et al. One-step constrained-volume synthesis of silver decorated polymer colloids with antimicrobial and sensing properties. Colloid Polym Sci 295, 521–527 (2017). https://doi.org/10.1007/s00396-017-4035-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4035-7

Keywords

Navigation