Skip to main content
Log in

Janus particles: from synthesis to application

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Janus particles have built momentum in the last years owing to their unique structure and properties. In this review, we present an overview of the advances in the field of non-centrosymmetric Janus particles and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Veyssié M, Casagrande C, Fabre P, Raphaël E (1989) “Janus beads”: realization and behaviour at water/oil interfaces. Europhys Lett 9:251–255. https://doi.org/10.1209/0295-5075/9/3/011

    Article  Google Scholar 

  2. de Gennes PG (1992) Soft matter. Science 256:495–497. https://doi.org/10.1126/science.256.5056.495

    Article  Google Scholar 

  3. Cho I, Lee K-W (1985) Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J Appl Polym Sci 30:1903–1926. https://doi.org/10.1002/app.1985.070300510

    Article  CAS  Google Scholar 

  4. Love JC, Gates BD, Wolfe DB, et al. (2002) Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett 2:891–894. https://doi.org/10.1021/nl025633l

    Article  CAS  Google Scholar 

  5. Cha BG, Piao Y, Kim J (2015) Asymmetric nanoparticle assembly via simple mechanical pressing using relative hardness of materials. Mater Res Bull 70:424–429. https://doi.org/10.1016/j.materresbull.2015.05.011

    Article  CAS  Google Scholar 

  6. Ito M, Enomoto R, Osawa K, et al. (2012) pH-responsive flocculation and dispersion behavior of Janus particles in water. Polym J 44:181–188. https://doi.org/10.1038/pj.2011.94

    Article  CAS  Google Scholar 

  7. Chao Y-C, Huang W-H, Cheng K-M, Kuo C (2014) Assembly and manipulation of Fe3O4/coumarin bifunctionalized submicrometer Janus particles. ACS Appl Mater Interfaces 6:4338–4345. https://doi.org/10.1021/am5000189

    Article  CAS  Google Scholar 

  8. Ye S, Carroll RL (2010) Design and fabrication of bimetallic colloidal “Janus” particles. ACS Appl Mater Interfaces 2:616–620. https://doi.org/10.1021/am900839w

    Article  CAS  Google Scholar 

  9. Takei H, Shimizu N (1997) Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 13:1865–1868. https://doi.org/10.1021/la9621067

    Article  CAS  Google Scholar 

  10. Smoukov SK, Gangwal S, Marquez M, Velev OD (2009) Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 5:1285–1292. https://doi.org/10.1039/B814304H

    Article  CAS  Google Scholar 

  11. Choi J, Zhao Y, Zhang D, et al. (2003) Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Lett 3:995–1000. https://doi.org/10.1021/nl034106e

    Article  CAS  Google Scholar 

  12. Ling XY, Phang IY, Acikgoz C, et al. (2009) Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew Chemie Int Ed 48:7677–7682. https://doi.org/10.1002/anie.200903579

    Article  CAS  Google Scholar 

  13. Xu W, Wei M, Serpe MJ (2017) Janus microgels with tunable functionality, polarity, and optical properties. Adv Opt Mater 5:1600614. https://doi.org/10.1002/adom.201600614

    Article  CAS  Google Scholar 

  14. Tigges T, Hoenders D, Walther A (2015) Preparation of highly monodisperse monopatch particles with orthogonal click-type functionalization and biorecognition. Small 11:4540–4548. https://doi.org/10.1002/smll.201501071

    Article  CAS  Google Scholar 

  15. Chaudhary K, Chen Q, Juárez JJ, et al. (2012) Janus colloidal matchsticks. J Am Chem Soc 134:12901–12903. https://doi.org/10.1021/ja305067g

    Article  CAS  Google Scholar 

  16. Zhang L, Yu J, Yang M, et al. (2013) Janus graphene from asymmetric two-dimensional chemistry. Nat Commun 4:1443–1449. https://doi.org/10.1038/ncomms2464

    Article  CAS  Google Scholar 

  17. Ghoussoub YE, Schlenoff JB (2016) Janus nanofilms. Langmuir 32:3623–3629. https://doi.org/10.1021/acs.langmuir.6b00672

    Article  CAS  Google Scholar 

  18. Paunov VN, Cayre OJ (2004) Supraparticles and “Janus” particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique. Adv Mater 16:788–791. https://doi.org/10.1002/adma.200306476

    Article  CAS  Google Scholar 

  19. Adams DJ, Adams S, Melrose J, Weaver AC (2008) Influence of particle surface roughness on the behaviour of Janus particles at interfaces. Colloids Surfaces A Physicochem Eng Asp 317:360–365. https://doi.org/10.1016/j.colsurfa.2007.11.004

    Article  CAS  Google Scholar 

  20. Lin C-C, Liao C-W, Chao Y-C, Kuo C (2010) Fabrication and characterization of asymmetric Janus and ternary particles. ACS Appl Mater Interfaces 2:3185–3191. https://doi.org/10.1021/am1006589

    Article  CAS  Google Scholar 

  21. Delcea M, Madaboosi N, Yashchenok AM, et al. (2011) Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films. Chem Commun 47:2098–2100. https://doi.org/10.1039/C0CC04820H

    Article  CAS  Google Scholar 

  22. McConnell MD, Kraeutler MJ, Yang S, Composto RJ (2010) Patchy and multiregion Janus particles with tunable optical properties. Nano Lett 10:603–609. https://doi.org/10.1021/nl903636r

    Article  CAS  Google Scholar 

  23. Cayre O, Paunov VN, Velev OD (2003) Fabrication of dipolar colloid particles by microcontact printing. Chem Commun 2296–2297. doi: https://doi.org/10.1039/B307296G

  24. Jiang S, Granick S (2009) A simple method to produce trivalent colloidal particles. Langmuir 25:8915–8918. https://doi.org/10.1021/la902152n

    Article  CAS  Google Scholar 

  25. Kaufmann T, Wendeln C, Gokmen MT, et al. (2013) Chemically orthogonal trifunctional Janus beads by photochemical “sandwich” microcontact printing. Chem Commun 49:63–65. https://doi.org/10.1039/C2CC36483B

    Article  CAS  Google Scholar 

  26. Kaufmann T, Gokmen MT, Wendeln C, et al. (2011) “Sandwich” microcontact printing as a mild route towards monodisperse Janus particles with tailored bifunctionality. Adv Mater 23:79–83. https://doi.org/10.1002/adma.201003564

    Article  CAS  Google Scholar 

  27. Sanchez L, Patton P, Anthony SM, et al. (2015) Tracking single-particle rotation during macrophage uptake. Soft Matter 11:5346–5352. https://doi.org/10.1039/C5SM00893J

    Article  CAS  Google Scholar 

  28. Kaufmann T, Gokmen MT, Rinnen S, et al. (2012) Bifunctional Janus beads made by “sandwich” microcontact printing using click chemistry. J Mater Chem 22:6190–6199. https://doi.org/10.1039/C2JM16807C

    Article  CAS  Google Scholar 

  29. Kaufmann T, Wendeln C, Gokmen MT, et al. (2013) Chemically orthogonal trifunctional Janus beads by photochemical “sandwich” microcontact printing. Chem Commun (Camb) 49:63–65. https://doi.org/10.1039/c2cc36483b

    Article  CAS  Google Scholar 

  30. Liu L, Ren M, Yang W (2009) Preparation of polymeric Janus particles by directional UV-induced reactions. Langmuir 25:11048–11053. https://doi.org/10.1021/la901364a

    Article  CAS  Google Scholar 

  31. Anderson KD, Luo M, Jakubiak R, et al. (2010) Robust plasma polymerized-Titania/silica Janus microparticles. Chem Mater 22:3259–3264. https://doi.org/10.1021/cm100500d

    Article  CAS  Google Scholar 

  32. Chen RT, Muir BW, Such GK, et al. (2010) Fabrication of asymmetric “Janus” particles via plasma polymerization. Chem Commun 46:5121–5123. https://doi.org/10.1039/C0CC00474J

    Article  CAS  Google Scholar 

  33. Kim S-H, Lee SY, Yang S-M (2010) Janus microspheres for a highly flexible and impregnable water-repelling interface. Angew Chemie Int Ed 49:2535–2538. https://doi.org/10.1002/anie.201000108

    Article  CAS  Google Scholar 

  34. Suzuki D, Kawaguchi H (2006) Janus particles with a functional gold surface for control of surface plasmon resonance. Colloid Polym Sci 284:1471–1476. https://doi.org/10.1007/s00396-006-1524-5

    Article  CAS  Google Scholar 

  35. Erb RM, Jenness NJ, Clark RL, Yellen BB (2009) Towards holonomic control of Janus particles in optomagnetic traps. Adv Mater 21:4825–4829. https://doi.org/10.1002/adma.200900892

    Article  CAS  Google Scholar 

  36. Pawar AB, Kretzschmar I (2008) Patchy particles by glancing angle deposition. Langmuir 24:355–358. https://doi.org/10.1021/la703005z

    Article  CAS  Google Scholar 

  37. Cui JQ, Kretzschmar I (2006) Surface-anisotropic polystyrene spheres by electroless deposition. Langmuir 22:828–8284. https://doi.org/10.1021/la061742u

    Google Scholar 

  38. Shepard KB, Christie DA, Sosa CL, et al. (2015) Patchy Janus particles with tunable roughness and composition via vapor-assisted deposition of macromolecules. Appl Phys Lett 106:93104. https://doi.org/10.1063/1.4913913

    Article  CAS  Google Scholar 

  39. Gong J, Zu X, Li Y, et al. (2011) Janus particles with tunable coverage of zinc oxide nanowires. J Mater Chem 21:2067–2069. https://doi.org/10.1039/C0JM03809A

    Article  CAS  Google Scholar 

  40. Wang B, Li B, Zhao B, Li CY (2008) Amphiphilic Janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods. J Am Chem Soc 130:11594–11595. https://doi.org/10.1021/ja804192e

    Article  CAS  Google Scholar 

  41. Wang B, Dong B, Li B, et al. (2010) Janus gold nanoparticle with bicompartment polymer brushes templated by polymer single crystals. Polymer (Guildf) 51:4814–4822. https://doi.org/10.1016/j.polymer.2010.08.016

    Article  CAS  Google Scholar 

  42. Zhou T, Wang B, Dong B, Li CY (2012) Thermoresponsive amphiphilic Janus silica nanoparticles via combining “polymer single-crystal templating” and “grafting-from” methods. Macromolecules 45:8780–8789. https://doi.org/10.1021/ma3019987

    Article  CAS  Google Scholar 

  43. Poggi E, Bourgeois J-P, Ernould B, Gohy J-F (2015) Polymeric Janus nanoparticles templated by block copolymer thin films. RSC Adv 5:44218–44221. https://doi.org/10.1039/C5RA05290D

    Article  CAS  Google Scholar 

  44. Lim JK, Ciszek JW, Huo F, et al. (2008) Actuation of self-assembled two-component Rodlike nanostructures. Nano Lett 8:4441–4445. https://doi.org/10.1021/nl802381h

    Article  CAS  Google Scholar 

  45. Park S, Lim J-H, Chung S-W, Mirkin CA (2004) Self-assembly of mesoscopic metal-polymer Amphiphiles. Science 303:348–351. https://doi.org/10.1126/science.1093276

    Article  CAS  Google Scholar 

  46. Ou FS, Shaijumon MM, Ajayan PM (2008) Controlled manipulation of giant hybrid inorganic nanowire assemblies. Nano Lett 8:1853–1857. https://doi.org/10.1021/nl080407i

    Article  CAS  Google Scholar 

  47. Martin BR, Dermody DJ, Reiss BD, et al. (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11:1021–1025. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S

    Article  CAS  Google Scholar 

  48. Hurst SJ, Payne EK, Qin L, Mirkin CA (2006) Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chemie Int Ed 45:2672–2692. https://doi.org/10.1002/anie.200504025

    Article  CAS  Google Scholar 

  49. Chi M-H, Fang Z-X, Ko H-W, et al. (2016) Setting foot in asymmetric wetting environments: fabrication of mushroom-like anisotropic polymer nanoparticles. J Phys Chem C 120:28867–28874. https://doi.org/10.1021/acs.jpcc.6b10426

    Article  CAS  Google Scholar 

  50. Zhang H, Nunes JK, Gratton SEA, et al. (2009) Fabrication of multiphasic and regio-specifically functionalized PRINT ® particles of controlled size and shape. New J Phys. https://doi.org/10.1088/1367-2630/11/7/075018

  51. Wang J-Y, Wang Y, Sheiko SS, et al. (2012) Tuning multiphase amphiphilic rods to direct self-assembly. J Am Chem Soc 134:5801–5806. https://doi.org/10.1021/ja2066187

    Article  CAS  Google Scholar 

  52. Xia Y, Yin Y, Lu Y, McLellan J (2003) Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv Funct Mater 13:907–918. https://doi.org/10.1002/adfm.200300002

    Article  CAS  Google Scholar 

  53. Yin Y, Lu Y, Gates B, Xia Y (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729. https://doi.org/10.1021/ja011048v

    Article  CAS  Google Scholar 

  54. Hong L, Jiang S, Granick S (2006) Simple method to produce Janus colloidal particles in large quantity. Langmuir 22:9495–9499. https://doi.org/10.1021/la062716z

    Article  CAS  Google Scholar 

  55. Perro A, Meunier F, Schmitt V, Ravaine S (2009) Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surfaces A Physicochem Eng Asp 332:57–62. https://doi.org/10.1016/j.colsurfa.2008.08.027

    Article  CAS  Google Scholar 

  56. Jiang S, Granick S (2008) Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24:2438–2445. https://doi.org/10.1021/la703274a

    Article  CAS  Google Scholar 

  57. Liu B, Zhang C, Liu J, et al (2009) Janus non-spherical colloids by asymmetric wet-etching. Chem Commun 3871–3873. doi: https://doi.org/10.1039/B905981D

  58. Suzuki D, Tsuji S, Kawaguchi H (2007) Janus microgels prepared by surfactant-free Pickering emulsion-based modification and their self-assembly. J Am Chem Soc 129:8088–8089. https://doi.org/10.1021/ja072258w

    Article  CAS  Google Scholar 

  59. Umeda Y, Kobayashi T, Hirai T, Suzuki D (2011) Effects of pH and temperature on assembly of multiresponsive Janus microgels. Colloid Polym Sci 289:729–737. https://doi.org/10.1007/s00396-010-2356-x

    Article  CAS  Google Scholar 

  60. Park JH, Han N, Song JE, Cho EC (2017) A surfactant-free and shape-controlled synthesis of nonspherical Janus particles with thermally tunable amphiphilicity. Macromol Rapid Commun 38:1600621. https://doi.org/10.1002/marc.201600621

    Article  CAS  Google Scholar 

  61. Jia F, Liang F, Yang Z (2016) Janus mesoporous nanodisc from gelable triblock copolymer. ACS Macro Lett 5:1344–1347. https://doi.org/10.1021/acsmacrolett.6b00812

    Article  CAS  Google Scholar 

  62. Wang Z, Rutjes FPJT, van Hest JCM (2014) pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chem Commun 50:14550–14553. https://doi.org/10.1039/C4CC07048H

    Article  CAS  Google Scholar 

  63. Huang C, Shen X (2014) Janus molecularly imprinted polymer particles. Chem Commun 50:2646–2649. https://doi.org/10.1039/C3CC49586H

    Article  CAS  Google Scholar 

  64. Wu H, Yi W, Chen Z, et al. (2015) Janus graphene oxide nanosheets prepared via Pickering emulsion template. Carbon N Y 93:473–483. https://doi.org/10.1016/j.carbon.2015.05.083

    Article  CAS  Google Scholar 

  65. McGrail BT, Mangadlao JD, Rodier BJ, et al. (2016) Selective mono-facial modification of graphene oxide nanosheets in suspension. Chem Commun 52:288–291. https://doi.org/10.1039/C5CC05596B

    Article  CAS  Google Scholar 

  66. Panwar K, Jassal M, Agrawal AK (2015) In situ synthesis of Ag–SiO2 Janus particles with epoxy functionality for textile applications. Particuology 19:107–112. https://doi.org/10.1016/j.partic.2014.06.007

    Article  CAS  Google Scholar 

  67. Zahn N, Kickelbick G (2014) Synthesis and aggregation behavior of hybrid amphiphilic titania Janus nanoparticles via surface-functionalization in Pickering emulsions. Colloids Surfaces A Physicochem Eng Asp 461:142–150. https://doi.org/10.1016/j.colsurfa.2014.07.039

    Article  CAS  Google Scholar 

  68. Mendez-Gonzalez D, Alonso-Cristobal P, Lopez-Cabarcos E, Rubio-Retama J (2016) Multi-responsive hybrid Janus nanoparticles: surface functionalization through solvent physisorption. Eur Polym J 75:363–370. https://doi.org/10.1016/j.eurpolymj.2016.01.013

    Article  CAS  Google Scholar 

  69. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2016) A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surfaces A Physicochem Eng Asp 506:56–62. https://doi.org/10.1016/j.colsurfa.2016.06.006

    Article  CAS  Google Scholar 

  70. Li W, Cai X, Ma S, et al. (2016) Synthesis of amphipathic superparamagnetic Fe3O4 Janus nanoparticles via a moderate strategy and their controllable self-assembly. RSC Adv 6:40450–40458. https://doi.org/10.1039/C6RA04648G

    Article  CAS  Google Scholar 

  71. Zenerino A, Peyratout C, Aimable A (2015) Synthesis of fluorinated ceramic Janus particles via a Pickering emulsion method. J Colloid Interface Sci 450:174–181. https://doi.org/10.1016/j.jcis.2015.03.011

    Article  CAS  Google Scholar 

  72. Ruhland TM, McKenzie HS, Skelhon TS, et al. (2015) Nanoscale hybrid silica/polymer Janus particles with a double-responsive hemicorona. Polymer 79:299–308. https://doi.org/10.1016/j.polymer.2015.10.022

    Article  CAS  Google Scholar 

  73. Liu B, Wei W, Qu X, Yang Z (2008) Janus colloids formed by biphasic grafting at a Pickering emulsion interface. Angew Chemie Int Ed 47:3973–3975. https://doi.org/10.1002/anie.200705103

    Article  CAS  Google Scholar 

  74. Zhang J, Wang X, Wu D, et al. (2009) Bioconjugated Janus particles prepared by in situ click chemistry. Chem Mater 21:4012–4018. https://doi.org/10.1021/cm901437n

    Article  CAS  Google Scholar 

  75. Berger S, Synytska A, Ionov L, et al. (2008) Stimuli-responsive bicomponent polymer Janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676. https://doi.org/10.1021/ma802089h

    Article  CAS  Google Scholar 

  76. Kirillova A, Schliebe C, Stoychev G, et al. (2015) Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl Mater Interfaces 7:21218–21225. https://doi.org/10.1021/acsami.5b05224

    Article  CAS  Google Scholar 

  77. de Leon AC et al. (2017) Distinct chemical and physical properties of Janus nanosheets. ACS Nano 11:7485–7493. https://doi.org/10.1021/acsnano.7b04020

    Article  CAS  Google Scholar 

  78. Stöter M et al. (2016) Controlled exfoliation of layered silicate heterostructures into bilayers and their conversion into giant Janus platelets. Angew Chem Int Ed 55:7398–7402. https://doi.org/10.1002/anie.201601611

    Article  CAS  Google Scholar 

  79. Kirillova A et al. (2014) Platelet Janus particles with hairy polymer shells for multifunctional materials. ACS Appl Mater Interfaces 6:13106–13114. https://doi.org/10.1021/am502973y

    Article  CAS  Google Scholar 

  80. Liu J, Liu G, Zhang M, Sun P, Zhao H (2013) Synthesis and self-assembly of amphiphilic janus laponite disks. Macromolecules 46:5974–5984. https://doi.org/10.1021/ma4007363

    Article  CAS  Google Scholar 

  81. Weiss S et al. (2013) Hybrid Janus particles based on polymer-modified kaolinite. Polymer 54:1388–1396. https://doi.org/10.1016/j.polymer.2012.12.041

    Article  CAS  Google Scholar 

  82. Ji X, Zhang Q, Liang F, et al. (2014) Ionic liquid functionalized Janus nanosheets. Chem Commun 50:5706–5709. https://doi.org/10.1039/C4CC00649F

    Article  CAS  Google Scholar 

  83. Liu Y, Liang F, Wang Q, et al. (2015) Flexible responsive Janus nanosheets. Chem Commun 51:3562–3565. https://doi.org/10.1039/C4CC08420A

    Article  CAS  Google Scholar 

  84. Cao Z, Wang G, Chen Y, et al. (2015) Light-triggered responsive Janus composite Nanosheets. Macromolecules 48:7256–7261. https://doi.org/10.1021/acs.macromol.5b01257

    Article  CAS  Google Scholar 

  85. Liang F, Shen K, Qu X, et al. (2011) Inorganic Janus nanosheets. Angew Chemie Int Ed 50:2379–2382. https://doi.org/10.1002/anie.201007519

    Article  CAS  Google Scholar 

  86. Zhao Z, Liang F, Zhang G, et al. (2015) Dually responsive Janus composite nanosheets. Macromolecules 48:3598–3603. https://doi.org/10.1021/acs.macromol.5b00365

    Article  CAS  Google Scholar 

  87. Liang F, Liu J, Zhang C, et al. (2011) Janus hollow spheres by emulsion interfacial self-assembled sol-gel process. Chem Commun 47:1231–1233. https://doi.org/10.1039/C0CC03599H

    Article  CAS  Google Scholar 

  88. Chen Y, Liang F, Yang H, et al. (2012) Janus nanosheets of polymer–inorganic layered composites. Macromolecules 45:1460–1467. https://doi.org/10.1021/ma2021908

    Article  CAS  Google Scholar 

  89. Sheng L, Chen H, Fu W, Li Z (2015) Janus silica hollow spheres prepared via interfacial Biosilicification. Langmuir 31:11964–11970. https://doi.org/10.1021/acs.langmuir.5b02417

    Article  CAS  Google Scholar 

  90. Nie L, Liu S, Shen W, et al. (2007) One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into Supermicelles with a narrow size distribution. Angew Chemie Int Ed 46:6321–6324. https://doi.org/10.1002/anie.200700209

    Article  CAS  Google Scholar 

  91. Zhang S, Li Z, Samarajeewa S, et al. (2011) Orthogonally dual-clickable Janus nanoparticles via a cyclic templating strategy. J Am Chem Soc 133:11046–11049. https://doi.org/10.1021/ja203133h

    Article  CAS  Google Scholar 

  92. Zhou P, Wang Q, Zhang C-L, et al. (2015) pH responsive Janus polymeric nanosheets. Chinese Chem Lett 26:657–661. https://doi.org/10.1016/j.cclet.2015.04.006

    Article  CAS  Google Scholar 

  93. Sosa C, Liu R, Tang C, et al. (2016) Soft multifaced and patchy colloids by constrained volume self-assembly. Macromolecules 49:3580–3585. https://doi.org/10.1021/acs.macromol.6b00708

    Article  CAS  Google Scholar 

  94. Wang C, Yin H, Dai S, Sun S (2010) A general approach to noble metal−metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater 22:3277–3282. https://doi.org/10.1021/cm100603r

    Article  CAS  Google Scholar 

  95. Teranishi T, Saruyama M, Kanehara M (2009) Seed-mediated synthesis of metal sulfide patchy nanoparticles. Nano 1:225–228. https://doi.org/10.1039/B9NR00110G

    CAS  Google Scholar 

  96. Tian L, Zhang B, Li W, et al. (2014) Facile fabrication of Fe3O4@PS/PGMA magnetic Janus particles via organic-inorganic dual phase separation. RSC Adv 4:27152–27158. https://doi.org/10.1039/C4RA03140G

    Article  CAS  Google Scholar 

  97. Saito N, Kagari Y, Okubo M (2006) Effect of colloidal stabilizer on the shape of polystyrene/poly(methyl methacrylate) composite particles prepared in aqueous medium by the solvent evaporation method. Langmuir 22:9397–9402. https://doi.org/10.1021/la061298v

    Article  CAS  Google Scholar 

  98. Saito N, Nakatsuru R, Kagari Y, Okubo M (2007) Formation of “snowmanlike” polystyrene/poly(methyl methacrylate)/toluene droplets dispersed in an aqueous solution of a nonionic surfactant at thermodynamic equilibrium. Langmuir 23:11506–11512. https://doi.org/10.1021/la701388w

    Article  CAS  Google Scholar 

  99. Tanaka T, Nakatsuru R, Kagari Y, et al. (2008) Effect of molecular weight on the morphology of polystyrene/poly(methyl methacrylate) composite particles prepared by the solvent evaporation method. Langmuir 24:12267–12271. https://doi.org/10.1021/la802287s

    Article  CAS  Google Scholar 

  100. Saito N, Kagari Y, Okubo M (2007) Revisiting the morphology development of solvent-swollen composite polymer particles at thermodynamic equilibrium†. Langmuir 23:5914–5919. https://doi.org/10.1021/la063653n

    Article  CAS  Google Scholar 

  101. Tanaka T, Okayama M, Kitayama Y, et al. (2010) Preparation of “mushroom-like” Janus particles by site-selective surface-initiated atom transfer radical polymerization in aqueous dispersed systems. Langmuir 26:7843–7847. https://doi.org/10.1021/la904701r

    Article  CAS  Google Scholar 

  102. Tanaka T, Okayama M, Minami H, Okubo M (2010) Dual stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactants. Langmuir 26:11732–11736. https://doi.org/10.1021/la101237c

    Article  CAS  Google Scholar 

  103. Zhou X, Du Y, Wang X (2016) Azo polymer Janus particles and their photoinduced, symmetry-breaking deformation. ACS Macro Lett 5:234–237. https://doi.org/10.1021/acsmacrolett.5b00932

    Article  CAS  Google Scholar 

  104. Min NG, Choi TM, Kim S-H (2017) Bicolored Janus microparticles created by phase separation in emulsion drops. Macromol Chem Phys 218:1600265. https://doi.org/10.1002/macp.201600265

    Article  CAS  Google Scholar 

  105. Hu S-H, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and Magnetolytic therapy. J Am Chem Soc 132:7234–7237. https://doi.org/10.1021/ja102489q

    Article  CAS  Google Scholar 

  106. Deng R, Liang F, Qu X, et al. (2015) Diblock copolymer based Janus nanoparticles. Macromolecules 48:750–755. https://doi.org/10.1021/ma502339s

    Article  CAS  Google Scholar 

  107. Deng R, Li H, Zhu J, et al. (2016) Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules 49:1362–1368. https://doi.org/10.1021/acs.macromol.5b02507

    Article  CAS  Google Scholar 

  108. Deng R, Li H, Liang F, et al. (2015) Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 48:5855–5860. https://doi.org/10.1021/acs.macromol.5b01261

    Article  CAS  Google Scholar 

  109. Deng R, Liang F, Zhou P, et al (2014) Janus nanodisc of diblock copolymers. Adv Mater 1–4. doi: https://doi.org/10.1002/adma.201305849

  110. Deng R, Liu S, Liang F, et al. (2014) Polymeric Janus particles with hierarchical structures. Macromolecules 47:3701–3707. https://doi.org/10.1021/ma500331w

    Article  CAS  Google Scholar 

  111. Pfau A, Sander R, Kirsch S (2002) Orientational ordering of structured polymeric nanoparticles at interfaces. Langmuir 18:2880–2887. https://doi.org/10.1021/la010942x

    Article  CAS  Google Scholar 

  112. Misra A, Urban MW (2010) Acorn-shape polymeric nano-colloids: synthesis and self-assembled films. Macromol Rapid Commun 31:119–127. https://doi.org/10.1002/marc.200900233

    CAS  Google Scholar 

  113. Tang C, Zhang C, Liu J, et al. (2010) Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization. Macromolecules 43:5114–5120. https://doi.org/10.1021/ma100437t

    Article  CAS  Google Scholar 

  114. Park J-G, Forster JD, Dufresne ER (2010) High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc 132:5960–5961. https://doi.org/10.1021/ja101760q

    Article  CAS  Google Scholar 

  115. Kim J-W, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 128:14374–14377. https://doi.org/10.1021/ja065032m

    Article  CAS  Google Scholar 

  116. Tu F, Lee D (2014) Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J Am Chem Soc 136:9999–10006. https://doi.org/10.1021/ja503189r

    Article  CAS  Google Scholar 

  117. Chu F, Polzer F, Severin N, et al. (2014) Thermosensitive hollow Janus dumbbells. Colloid Polym Sci 292:1785–1793. https://doi.org/10.1007/s00396-014-3287-8

    Article  CAS  Google Scholar 

  118. Zhang Y, Liu H-R, Wang F-W (2013) Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization. Colloid Polym Sci 291:2993–3003. https://doi.org/10.1007/s00396-013-3051-5

    Article  CAS  Google Scholar 

  119. Skelhon TS, Chen Y, Bon SAF (2014) Synthesis of “hard–soft” Janus particles by seeded dispersion polymerization. Langmuir 30:13525–13532. https://doi.org/10.1021/la503366h

    Article  CAS  Google Scholar 

  120. Sun Y, Liang F, Qu X, et al. (2015) Robust reactive Janus composite particles of snowman shape. Macromolecules 48:2715–2722. https://doi.org/10.1021/acs.macromol.5b00207

    Article  CAS  Google Scholar 

  121. Staff RH, Willersinn J, Musyanovych A, et al. (2014) Janus nanoparticles with both faces selectively functionalized for click chemistry. Polym Chem 5:4097–4104. https://doi.org/10.1039/C4PY00085D

    Article  CAS  Google Scholar 

  122. Bradley LC, Stebe KJ, Lee D (2016) Clickable Janus particles. J Am Chem Soc 138:11437–11440. https://doi.org/10.1021/jacs.6b05633

    Article  CAS  Google Scholar 

  123. Li B, Wang M, Chen K, et al. (2015) Synthesis of biofunctional Janus particles. Macromol Rapid Commun 36:1200–1204. https://doi.org/10.1002/marc.201500063

    Article  CAS  Google Scholar 

  124. Yamagami T, Kitayama Y, Okubo M (2014) Preparation of stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactant by site-selective surface-initiated AGET ATRP in aqueous dispersed systems. Langmuir 30:7823–7832. https://doi.org/10.1021/la501266t

    Article  CAS  Google Scholar 

  125. Ge L, Lu S, Han J, Guo R (2015) Anisotropic particles templated by Janus emulsion. Chem Commun 51:7432–7434. https://doi.org/10.1039/C5CC00935A

    Article  CAS  Google Scholar 

  126. Hasinovic H, Friberg SE (2011) One-step inversion process to a Janus emulsion with two mutually insoluble oils. Langmuir 27:6584–6588. https://doi.org/10.1021/la105118h

    Article  CAS  Google Scholar 

  127. Hasinovic H, Friberg SE, Rong G (2011) A one-step process to a Janus emulsion. J Colloid Interface Sci 354:424–426. https://doi.org/10.1016/j.jcis.2010.10.004

    Article  CAS  Google Scholar 

  128. Ge L, Friberg SE, Guo R (2016) Recent studies of Janus emulsions prepared by one-step vibrational mixing. Curr Opin Colloid Interface Sci 25:58–66. https://doi.org/10.1016/j.cocis.2016.05.001

    Article  CAS  Google Scholar 

  129. Yabu H, Kanahara M, Shimomura M, et al. (2013) Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles. ACS Appl Mater Interfaces 5:3262–3266. https://doi.org/10.1021/am4003149

    Article  CAS  Google Scholar 

  130. Yabu H, Sato S (2013) Controlled assembly of silica microspheres in spherically confined polymer particles by using self-organized precipitation (SORP) method. Colloid Polym Sci 291:181–186. https://doi.org/10.1007/s00396-012-2643-9

    Article  CAS  Google Scholar 

  131. Higuchi T, Tajima A, Yabu H, Shimomura M (2008) Spontaneous formation of polymer nanoparticles with inner micro-phase separation structures. Soft Matter 4:1302–1305. https://doi.org/10.1039/B800904J

    Article  CAS  Google Scholar 

  132. Higuchi T, Tajima A, Motoyoshi K, et al. (2008) Frustrated phases of block copolymers in nanoparticles. Angew Chemie 120:8164–8166. https://doi.org/10.1002/ange.200803003

    Article  Google Scholar 

  133. Arita T, Kanahara M, Motoyoshi K, et al. (2013) Localization of polymer-grafted maghemite nanoparticles in a hemisphere of Janus polymer particles prepared by a self-organized precipitation (SORP) method. J Mater Chem C 1:207–212. https://doi.org/10.1039/C2TC00350C

    Article  CAS  Google Scholar 

  134. Nisisako T (2016) Recent advances in microfluidic production of Janus droplets and particles. Curr Opin Colloid Interface Sci 25:1–12. https://doi.org/10.1016/j.cocis.2016.05.003

    Article  CAS  Google Scholar 

  135. Lone S, Cheong IW (2014) Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv 4:13322–13333. https://doi.org/10.1039/C4RA00158C

    Article  CAS  Google Scholar 

  136. Nie Z, Li W, Seo M, et al. (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–9412. https://doi.org/10.1021/ja060882n

    Article  CAS  Google Scholar 

  137. Chen C-H, Shah RK, Abate AR, Weitz DA (2009) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25:4320–4323. https://doi.org/10.1021/la900240y

    Article  CAS  Google Scholar 

  138. Yang Y-T, Wei J, Li X, et al. (2015) A side-by-side capillaries-based microfluidic system for synthesizing size- and morphology-controlled magnetic anisotropy janus beads. Adv Powder Technol 26:156–162. https://doi.org/10.1016/j.apt.2014.08.018

    Article  CAS  Google Scholar 

  139. Khan IU, Serra CA, Anton N, et al. (2014) Microfluidic conceived drug loaded Janus particles in side-by-side capillaries device. Int J Pharm 473:239–249. https://doi.org/10.1016/j.ijpharm.2014.06.035

    Article  CAS  Google Scholar 

  140. Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2010) Multifunctional superparamagnetic Janus particles. Langmuir 26:4281–4287. https://doi.org/10.1021/la903348s

    Article  CAS  Google Scholar 

  141. Seiffert S, Romanowsky MB, Weitz DA (2010) Janus microgels produced from functional precursor polymers. Langmuir 26:14842–14847. https://doi.org/10.1021/la101868w

    Article  CAS  Google Scholar 

  142. Prasad N, Perumal J, Choi C-H, et al. (2009) Generation of monodisperse inorganic–organic Janus microspheres in a microfluidic device. Adv Funct Mater 19:1656–1662. https://doi.org/10.1002/adfm.200801181

    Article  CAS  Google Scholar 

  143. Lone S, Kim SH, Nam SW, et al. (2011) Microfluidic synthesis of Janus particles by UV-directed phase separation. Chem Commun 47:2634–2636. https://doi.org/10.1039/C0CC04517A

    Article  CAS  Google Scholar 

  144. Shah RK, Kim J-W, Weitz DA (2009) Janus supraparticles by induced phase separation of nanoparticles in droplets. Adv Mater 21:1949–1953. https://doi.org/10.1002/adma.200803115

    Article  CAS  Google Scholar 

  145. Xie J, Jiang J, Davoodi P, et al. (2015) Electrohydrodynamic atomization: a two-decade effort to produce and process micro−/nanoparticulate materials. Chem Eng Sci 125:32–57. https://doi.org/10.1016/j.ces.2014.08.061

    Article  CAS  Google Scholar 

  146. Roh K-H, Martin DC, Lahann J (2005) Biphasic Janus particles with nanoscale anisotropy. Nat Mater 4:759–763. https://doi.org/10.1038/nmat1486

    Article  CAS  Google Scholar 

  147. Bhaskar S, Roh K-H, Jiang X, et al. (2008) Spatioselective modification of Bicompartmental polymer particles and fibers via Huisgen 1,3-dipolar cycloaddition. Macromol Rapid Commun 29:1655–1660. https://doi.org/10.1002/marc.200800459

    Article  CAS  Google Scholar 

  148. Zhang C, Chang M-W, Li Y, et al. (2016) Janus particle synthesis via aligned non-concentric angular nozzles and electrohydrodynamic co-flow for tunable drug release. RSC Adv 6:77174–77178. https://doi.org/10.1039/C6RA15387A

    Article  CAS  Google Scholar 

  149. Bhaskar S, Pollock KM, Yoshida M, Lahann J (2010) Towards designer microparticles: simultaneous control of anisotropy, shape, and size. Small 6:404–411. https://doi.org/10.1002/smll.200901306

    Article  CAS  Google Scholar 

  150. Saha S, Copic D, Bhaskar S, et al. (2012) Chemically controlled bending of compositionally anisotropic microcylinders. Angew Chemie Int Ed 51:660–665. https://doi.org/10.1002/anie.201105387

    Article  CAS  Google Scholar 

  151. Lv W, Lee KJ, Li J, et al. (2012) Anisotropic Janus catalysts for spatially controlled chemical reactions. Small 8:3116–3122. https://doi.org/10.1002/smll.201200192

    Article  CAS  Google Scholar 

  152. Sokolovskaya E, Yoon J, Misra AC, et al. (2013) Controlled microstructuring of Janus particles based on a multifunctional poly(ethylene glycol). Macromol Rapid Commun 34:1554–1559. https://doi.org/10.1002/marc.201300427

    Article  CAS  Google Scholar 

  153. Sokolovskaya E, Rahmani S, Misra AC, et al. (2015) Dual-stimuli-responsive microparticles. ACS Appl Mater Interfaces 7:9744–9751. https://doi.org/10.1021/acsami.5b01592

    Article  CAS  Google Scholar 

  154. Yoon J, Kota A, Bhaskar S, et al. (2013) Amphiphilic colloidal surfactants based on Electrohydrodynamic co-jetting. ACS Appl Mater Interfaces 5:11281–11287. https://doi.org/10.1021/am403516h

    Article  CAS  Google Scholar 

  155. Pochan DJ et al. (2011) Multicompartment and multigeometry nanoparticle assembly. Soft Matter 7:2500–2506. https://doi.org/10.1039/C0SM00960A

    Article  CAS  Google Scholar 

  156. Voets IK, de Keizer A, de Waard P, et al. (2006) Double-faced micelles from water-soluble polymers. Angew Chemie Int Ed 45:6673–6676. https://doi.org/10.1002/anie.200601000

    Article  CAS  Google Scholar 

  157. Voets IK, Fokkink R, Hellweg T, et al. (2009) Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter 5:999–1005. https://doi.org/10.1039/B812793J

    Article  CAS  Google Scholar 

  158. Du J, Armes SP (2010) Patchy multi-compartment micelles are formed by direct dissolution of an ABC triblock copolymer in water. Soft Matter 6:4851–4857. https://doi.org/10.1039/C0SM00258E

    Article  CAS  Google Scholar 

  159. Wang W, Zhang J, Li C, et al. (2014) Facile access to cytocompatible multicompartment micelles with adjustable Janus-cores from A-block-B-graft-C terpolymers prepared by combination of ROP and ATRP. Colloids Surfaces B Biointerfaces 115:302–309. https://doi.org/10.1016/j.colsurfb.2013.12.026

    Article  CAS  Google Scholar 

  160. Zhang W, He J, Dong X (2016) Controlled fabrication of polymeric Janus nanoparticles and their solution behaviors. RSC Adv 6:105070–105075. https://doi.org/10.1039/C6RA23715K

    Article  CAS  Google Scholar 

  161. Cheng L, Zhang G, Zhu L, et al. (2008) Nanoscale tubular and sheetlike superstructures from hierarchical self-assembly of polymeric janus particles. Angew Chem Int Ed Engl 47:10171–10174. https://doi.org/10.1002/anie.200803315

    Article  CAS  Google Scholar 

  162. Gröschel AH, Walther A, Löbling TI, et al. (2012) Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance. J Am Chem Soc 134:13850–13860. https://doi.org/10.1021/ja305903u

    Article  CAS  Google Scholar 

  163. Zhang Z, Zhou C, Dong H, Chen D (2016) Solution-based fabrication of narrow-disperse ABC three-segment and Θ-shaped nanoparticles. Angew Chemie Int Ed 55:6182–6186. https://doi.org/10.1002/anie.201511768

    Article  CAS  Google Scholar 

  164. Zhang W, He J, Bao H, Dong X (2015) Polymeric Janus nanoparticles from triblock terpolymer micellar dimers. RSC Adv 5:104223–104227. https://doi.org/10.1039/C5RA17384A

    Article  CAS  Google Scholar 

  165. Rupar PA, Chabanne L, Winnik MA, Manners I (2012) Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337:559–562. https://doi.org/10.1126/science.1221206

    Article  CAS  Google Scholar 

  166. Saito R, Fujita A, Ichimura A, Ishizu K (2000) Synthesis of microspheres with microphase-separated shells. J Polym Sci Part A Polym Chem 38:2091–2097. https://doi.org/10.1002/(SICI)1099-0518(20000601)38:11<2091::AID-POLA180>3.0.CO;2-W

    Article  CAS  Google Scholar 

  167. Hiekkataipale P et al. (2016) Controlling the shape of Janus nanostructures through supramolecular modification of ABC terpolymer bulk morphologies. Polymer 107:456–465. https://doi.org/10.1016/j.polymer.2016.05.076

    Article  CAS  Google Scholar 

  168. Liu Y, Abetz V, Müller A (2003) Janus cylinders. Macromolecules 7894–7898. doi: https://doi.org/10.1021/ma0345551

  169. Erhardt R, Böker A, Zettl H, et al. (2001) Janus micelles. Macromolecules 34:1069–1075. https://doi.org/10.1021/ma000670p

    Article  CAS  Google Scholar 

  170. Walther A, André X, Drechsler M, et al. (2007) Janus discs. J Am Chem Soc 129:6187–6198. https://doi.org/10.1021/ja068153v

    Article  CAS  Google Scholar 

  171. Wolf A, Walther A, Müller AHE (2011) Janus triad: three types of nonspherical, nanoscale Janus particles from one single triblock Terpolymer. Macromolecules 44:9221–9229. https://doi.org/10.1021/ma2020408

    Article  CAS  Google Scholar 

  172. Acton AL, Fante C, Flatley B, et al. (2013) Janus PEG-based dendrimers for use in combination therapy: controlled multi-drug loading and sequential release. Biomacromolecules 14:564–574. https://doi.org/10.1021/bm301881h

    Article  CAS  Google Scholar 

  173. Caminade A-M, Laurent R, Delavaux-Nicot B, Majoral J-P (2012) “Janus” dendrimers: syntheses and properties. New J Chem 36:217–226. https://doi.org/10.1039/C1NJ20458K

    Article  CAS  Google Scholar 

  174. Rosen BM, Wilson CJ, Wilson DA, et al. (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109:6275–6540. https://doi.org/10.1021/cr900157q

    Article  CAS  Google Scholar 

  175. Zhang S, Sun H-J, Hughes AD, et al. (2014) “Single–single” amphiphilic Janus dendrimers self-assemble into uniform Dendrimersomes with predictable size. ACS Nano 8:1554–1565. https://doi.org/10.1021/nn405790x

    Article  CAS  Google Scholar 

  176. Verduzco R, Li X, Pesek SL, Stein GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 44:2405–2420. https://doi.org/10.1039/c4cs00329b

    Article  CAS  Google Scholar 

  177. Feng X, Taton D, Ibarboure E, et al. (2008) Janus-type dendrimer-like poly (ethylene oxide)s. J Am Chem Soc 130:11662–11676. https://doi.org/10.1021/ja7103119

    Article  CAS  Google Scholar 

  178. Ariura F, Schappacher M, Borsali R, Deffieux A (2009) Janus combs with polystyrene and poly(methyl vinyl ether) branches: design, characterization and properties. React Funct Polym 69:402–408. https://doi.org/10.1016/j.reactfunctpolym.2008.12.006

    Article  CAS  Google Scholar 

  179. Lee H, Matyjaszewski K, Yu-Su S, Sheiko SS (2008) Hetero-grafted block brushes with PCL and PBA side chains. Macromolecules 41:6073–6080. https://doi.org/10.1021/ma800412s

    Article  CAS  Google Scholar 

  180. Rzayev J (2009) Synthesis of polystyrene−polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules 42:2135–2141. https://doi.org/10.1021/ma802304y

    Article  CAS  Google Scholar 

  181. Li Z, Ma J, Cheng C, et al. (2010) Synthesis of hetero-grafted amphiphilic Diblock molecular brushes and their self-assembly in aqueous medium. Macromolecules 43:1182–1184. https://doi.org/10.1021/ma902513n

    Article  CAS  Google Scholar 

  182. Li W, Kuo C-H, Kanyo I, et al. (2014) Synthesis and self-assembly of amphiphilic hybrid Nano building blocks via self-collapse of polymer single chains. Macromolecules 47:5932–5941. https://doi.org/10.1021/ma501338s

    Article  CAS  Google Scholar 

  183. Tao J, Liu G (1997) Polystyrene-block-poly(2-cinnamoylethyl methacrylate) tadpole molecules. Macromolecules 30:2408–2411. https://doi.org/10.1021/ma961422p

    Article  CAS  Google Scholar 

  184. Njikang G, Liu G, Curda SA (2008) Tadpoles from the intramolecular photo-cross-linking of diblock copolymers. Macromolecules 41:5697–5702. https://doi.org/10.1021/ma800642r

    Article  CAS  Google Scholar 

  185. Altintas O, Willenbacher J, Wuest KNR, et al. (2013) A mild and efficient approach to functional single-chain polymeric nanoparticles via photoinduced Diels–Alder ligation. Macromolecules 46:8092–8101. https://doi.org/10.1021/ma4015033

    Article  CAS  Google Scholar 

  186. Harth E, Van Horn B, Lee VY, et al. (2002) A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J Am Chem Soc 124:8653–8660. https://doi.org/10.1021/ja026208x

    Article  CAS  Google Scholar 

  187. Kim Y, Pyun J, Fréchet JMJ, et al. (2005) The dramatic effect of architecture on the self-assembly of block copolymers at interfaces. Langmuir 21:10444–10458. https://doi.org/10.1021/la047122f

    Article  CAS  Google Scholar 

  188. Li W, Thanneeru S, Kanyo I, et al. (2015) Amphiphilic hybrid nano building blocks with surfactant-mimicking structures. ACS Macro Lett 4:736–740. https://doi.org/10.1021/acsmacrolett.5b00321

    Article  CAS  Google Scholar 

  189. Wen J, Yuan L, Yang Y, et al. (2013) Self-assembly of monotethered single-chain nanoparticle shape amphiphiles. ACS Macro Lett 2:100–106. https://doi.org/10.1021/mz300636x

    Article  CAS  Google Scholar 

  190. Cheng L, Hou G, Miao J, et al. (2008) Efficient synthesis of unimolecular polymeric Janus nanoparticles and their unique self-assembly behavior in a common solvent. Macromolecules 41:8159–8166. https://doi.org/10.1021/ma800461z

    Article  CAS  Google Scholar 

  191. Fernandez-Rodriguez MA, Rodriguez-Valverde MA, Cabrerizo-Vilchez MA, Hidalgo-Alvarez R (2016) Surface activity of Janus particles adsorbed at fluid–fluid interfaces: theoretical and experimental aspects. Adv Colloid Interf Sci 233:240–254. https://doi.org/10.1016/j.cis.2015.06.002

    Article  CAS  Google Scholar 

  192. Kumar A, Park BJ, Tu F, Lee D (2013) Amphiphilic Janus particles at fluid interfaces. Soft Matter 9:6604–6617. https://doi.org/10.1039/C3SM50239B

    Article  CAS  Google Scholar 

  193. Jiang S, Granick S (2007) Janus balance of amphiphilic colloidal particles. J Chem Phys. https://doi.org/10.1063/1.2803420

  194. Binks BP, Fletcher PDI (2001) Particles adsorbed at the oil−water Interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir 17:4708–4710. https://doi.org/10.1021/la0103315

    Article  CAS  Google Scholar 

  195. Glaser N, Adams DJ, Böker A, Krausch G (2006) Janus particles at liquid−liquid interfaces. Langmuir 22:5227–5229. https://doi.org/10.1021/la060693i

    Article  CAS  Google Scholar 

  196. Nonomura Y, Komura S, Tsujii K (2004) Adsorption of disk-shaped Janus beads at liquid−liquid interfaces. Langmuir 20:11821–11823. https://doi.org/10.1021/la0480540

    Article  CAS  Google Scholar 

  197. Park BJ, Lee D (2012) Configuration of nonspherical amphiphilic particles at a fluid-fluid interface. Soft Matter 8:7690–7698. https://doi.org/10.1039/C2SM25775K

    Article  CAS  Google Scholar 

  198. Aveyard R (2012) Can Janus particles give thermodynamically stable Pickering emulsions? Soft Matter 8:5233–5240. https://doi.org/10.1039/C2SM07230K

    Article  CAS  Google Scholar 

  199. Tu F, Park BJ, Lee D (2013) Thermodynamically stable emulsions using Janus dumbbells as colloid surfactants. Langmuir 29:12679–12687. https://doi.org/10.1021/la402897d

    Article  CAS  Google Scholar 

  200. Walther A, Hoffmann M, Müller AHE (2008) Emulsion polymerization using Janus particles as stabilizers. Angew Chemie Int Ed 47:711–714. https://doi.org/10.1002/ange.200703224

    Article  CAS  Google Scholar 

  201. Ruhland TM, Gröschel AH, Ballard N, et al. (2013) Influence of Janus particle shape on their interfacial behavior at liquid-liquid interfaces. Langmuir 29:1388–1394. https://doi.org/10.1021/la3048642

    Article  CAS  Google Scholar 

  202. Ruhland TM, Gröschel AH, Walther A, Müller AHE (2011) Janus cylinders at liquid–liquid interfaces. Langmuir 27:9807–9814. https://doi.org/10.1021/la201863x

    Article  CAS  Google Scholar 

  203. Lee J, Yezer BA, Prieve DC, Behrens SH (2016) Janus particles in a nonpolar solvent. Langmuir 32:3095–3099. https://doi.org/10.1021/acs.langmuir.5b04255

    Article  CAS  Google Scholar 

  204. Cole-Hamilton DJ (2009) Janus catalysts direct nanoparticle reactivity. Science 327:41–42. https://doi.org/10.1126/science.1184556

    Article  CAS  Google Scholar 

  205. Faria J, Ruiz MP, Resasco DE (2010) Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv Synth Catal 352:2359–2364. https://doi.org/10.1002/adsc.201000479

    Article  CAS  Google Scholar 

  206. Liu Y, Hu J, Yu X, et al. (2017) Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. J Colloid Interface Sci 490:357–364. https://doi.org/10.1016/j.jcis.2016.11.053

    Article  CAS  Google Scholar 

  207. Cao W, Huang R, Qi W, et al. (2015) Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media. ACS Appl Mater Interfaces 7:465–473. https://doi.org/10.1021/am5065156

    Article  CAS  Google Scholar 

  208. Pan D, Mou F, Li X, et al. (2016) Multifunctional magnetic oleic acid-coated MnFe2O4/polystyrene Janus particles for water treatment. J Mater Chem A 4:11768–11774. https://doi.org/10.1039/C6TA04010A

    Article  CAS  Google Scholar 

  209. Nie H, Zhang C, Liu Y, He A (2016) Synthesis of Janus rubber hybrid particles and interfacial behavior. Macromolecules 49:2238–2244. https://doi.org/10.1021/acs.macromol.6b00159

    Article  CAS  Google Scholar 

  210. Wang H, Dong W, Li Y (2015) Compatibilization of immiscible polymer blends using in situ formed Janus Nanomicelles by reactive blending. ACS Macro Lett 4:1398–1403. https://doi.org/10.1021/acsmacrolett.5b00763

    Article  CAS  Google Scholar 

  211. Walther A, Matussek K, Müller AHE (2008) Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles. ACS Nano 2:1167–1178. https://doi.org/10.1021/nn800108y

    Article  CAS  Google Scholar 

  212. Bryson KC, Löbling TI, Müller AHE, et al. (2015) Using Janus nanoparticles to trap polymer blend morphologies during solvent-evaporation-induced demixing. Macromolecules 48:4220–4227. https://doi.org/10.1021/acs.macromol.5b00640

    Article  CAS  Google Scholar 

  213. Bahrami R, Löbling TI, Gröschel AH, et al. (2014) The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. ACS Nano 8:10048–10056. https://doi.org/10.1021/nn502662p

    Article  CAS  Google Scholar 

  214. Bärwinkel S, Bahrami R, Löbling TI, et al. (2016) Polymer foams made of immiscible polymer blends compatibilized by Janus particles—effect of compatibilization on foam morphology. Adv Eng Mater 18:814–825. https://doi.org/10.1002/adem.201500387

    Article  CAS  Google Scholar 

  215. Bahrami R, Löbling TI, Schmalz H, et al. (2017) Synergistic effects of Janus particles and triblock terpolymers on toughness of immiscible polymer blends. Polymer (Guildf) 109:229–237. https://doi.org/10.1016/j.polymer.2016.12.044

    Article  CAS  Google Scholar 

  216. Gröschel AH, Löbling TI, Petrov PD, et al. (2013) Janus micelles as effective supracolloidal dispersants for carbon nanotubes. Angew Chem Int Ed Engl 52:3602–3606. https://doi.org/10.1002/anie.201208293

    Article  CAS  Google Scholar 

  217. Panwar K, Jassal M, Agrawal AK (2017) TiO2–SiO2 Janus particles treated cotton fabric for thermal regulation. Surf Coatings Technol 309:897–903. https://doi.org/10.1016/j.surfcoat.2016.10.066

    Article  CAS  Google Scholar 

  218. Yang H, Liang F, Chen Y, et al. (2015) Lotus leaf inspired robust superhydrophobic coating from strawberry-like Janus particles. NPG Asia Mater 7:e176. https://doi.org/10.1038/am.2015.33

    Article  CAS  Google Scholar 

  219. Synytska A, Khanum R, Ionov L, et al. (2011) Water-repellent textile via decorating fibers with amphiphilic Janus particles. ACS Appl Mater Interfaces 3:1216–1220. https://doi.org/10.1021/am200033u

    Article  CAS  Google Scholar 

  220. Berger S, Ionov L, Synytska A (2011) Engineering of ultra-hydrophobic functional coatings using controlled aggregation of bicomponent core/shell Janus particles. Adv Funct Mater 21:2338–2344. https://doi.org/10.1002/adfm.201100155

    Article  CAS  Google Scholar 

  221. Zhao H, Liang F, Qu X, et al. (2015) Conelike Janus composite particles. Macromolecules 48:700–706. https://doi.org/10.1021/ma502421z

    Article  CAS  Google Scholar 

  222. Kirillova A, Ionov L, Roisman IV, Synytska A (2016) Hybrid hairy Janus particles for anti-icing and de-icing surfaces: synergism of properties and effects. Chem Mater 28:6995–7005. https://doi.org/10.1021/acs.chemmater.6b02765

    Article  CAS  Google Scholar 

  223. Kirillova A, Marschelke C, Friedrichs J, et al. (2016) Hybrid hairy Janus particles as building blocks for antibiofouling surfaces. ACS Appl Mater Interfaces 8:32591–32603. https://doi.org/10.1021/acsami.6b10588

    Article  CAS  Google Scholar 

  224. Behrend CJ, Anker JN, McNaughton BH, Kopelman R (2005) Microrheology with modulated optical nanoprobes (MOONs). J Magn Magn Mater 293:663–670. https://doi.org/10.1016/j.jmmm.2005.02.072

    Article  CAS  Google Scholar 

  225. Anker JN, Kopelman R (2003) Magnetically modulated optical nanoprobes. Appl Phys Lett. https://doi.org/10.1063/1.1544435

  226. Yin S-N, Wang C-F, Yu Z-Y, et al. (2011) Versatile bifunctional magnetic-fluorescent responsive Janus Supraballs towards the flexible bead display. Adv Mater 23:2915–2919. https://doi.org/10.1002/adma.201100203

    Article  CAS  Google Scholar 

  227. Ghosh A, Sheridon NK, Fischer P (2008) Voltage-controllable magnetic composite based on multifunctional polyethylene microparticles. Small 4:1956–1958. https://doi.org/10.1002/smll.200701301

    Article  CAS  Google Scholar 

  228. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156. https://doi.org/10.1002/adma.200502431

    Article  CAS  Google Scholar 

  229. Komazaki Y, Hirama H, Torii T (2015) Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. J Appl Phys 117:154506. https://doi.org/10.1063/1.4917379

    Article  CAS  Google Scholar 

  230. Parmar J, Ma X, Katuri J, et al. (2015) Nano and micro architectures for self-propelled motors. Sci Technol Adv Mater 16:14802. https://doi.org/10.1088/1468-6996/16/1/014802

    Article  CAS  Google Scholar 

  231. Jurado-Sánchez B, Sattayasamitsathit S, Gao W, et al. (2015) Self-propelled activated carbon Janus micromotors for efficient water purification. Small 11:499–506. https://doi.org/10.1002/smll.201402215

    Article  CAS  Google Scholar 

  232. Xuan M, Shao J, Lin X, et al. (2014) Self-propelled Janus mesoporous silica Nanomotors with Sub-100 nm diameters for drug encapsulation and delivery. ChemPhysChem 15:2255–2260. https://doi.org/10.1002/cphc.201402111

    Article  CAS  Google Scholar 

  233. Ma X, Hahn K, Sanchez S (2015) Catalytic mesoporous Janus Nanomotors for active cargo delivery. J Am Chem Soc 137:4976–4979. https://doi.org/10.1021/jacs.5b02700

    Article  CAS  Google Scholar 

  234. Gao W, Wang J (2014) Synthetic micro/nanomotors in drug delivery. Nano 6:10486–10494. https://doi.org/10.1039/C4NR03124E

    CAS  Google Scholar 

  235. Orozco J, Mercante LA, Pol R, Merkoci A (2016) Graphene-based Janus micromotors for the dynamic removal of pollutants. J Mater Chem A 4:3371–3378. https://doi.org/10.1039/C5TA09850E

    Article  CAS  Google Scholar 

  236. Jurado-Sánchez B, Escarpa A (2017) Janus micromotors for electrochemical sensing and biosensing applications: a review. Electroanalysis 29:14–23. https://doi.org/10.1002/elan.201600567

    Article  CAS  Google Scholar 

  237. Soler L, Sanchez S (2014) Catalytic nanomotors for environmental monitoring and water remediation. Nano 6:7175–7182. https://doi.org/10.1039/C4NR01321B

    CAS  Google Scholar 

  238. Simmchen J, Baeza A, Ruiz D, et al. (2012) Asymmetric hybrid silica Nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8:2053–2059. https://doi.org/10.1002/smll.201101593

    Article  CAS  Google Scholar 

  239. Baraban L, Makarov D, Streubel R, et al. (2012) Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6:3383–3389. https://doi.org/10.1021/nn300413p

    Article  CAS  Google Scholar 

  240. Baraban L, Tasinkevych M, Popescu MN, et al. (2012) Transport of cargo by catalytic Janus micro-motors. Soft Matter 8:48–52. https://doi.org/10.1039/C1SM06512B

    Article  CAS  Google Scholar 

  241. Wang L, Liu Y, He J, et al. (2015) Continuous microfluidic self-assembly of hybrid Janus-like vesicular motors: autonomous propulsion and controlled release. Small 11:3762–3767. https://doi.org/10.1002/smll.201500527

    Article  CAS  Google Scholar 

  242. Dey KK, Wong F, Altemose A, Sen A (2016) Catalytic motors—quo Vadimus? Curr Opin Colloid Interface Sci 21:4–13. https://doi.org/10.1016/j.cocis.2015.12.001

    Article  CAS  Google Scholar 

  243. Li J, Singh VV, Sattayasamitsathit S, et al. (2014) Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8:11118–11125. https://doi.org/10.1021/nn505029k

    Article  CAS  Google Scholar 

  244. Wheat PM, Marine NA, Moran JL, Posner JD (2010) Rapid fabrication of bimetallic spherical motors. Langmuir 26:13052–13055. https://doi.org/10.1021/la102218w

    Article  CAS  Google Scholar 

  245. Mou F, Chen C, Zhong Q, et al. (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6:9897–9903. https://doi.org/10.1021/am502729y

    Article  CAS  Google Scholar 

  246. Ma X, Katuri J, Zeng Y, et al. (2015) Surface conductive graphene-wrapped micromotors exhibiting enhanced motion. Small 11:5023–5027. https://doi.org/10.1002/smll.201501223

    Article  CAS  Google Scholar 

  247. Gao W, Pei A, Dong R, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136:2276–2279. https://doi.org/10.1021/ja413002e

    Article  CAS  Google Scholar 

  248. Pavlick RA, Sengupta S, McFadden T, et al. (2011) A polymerization-powered motor. Angew Chemie Int Ed 50:9374–9377. https://doi.org/10.1002/anie.201103565

    Article  CAS  Google Scholar 

  249. Stanton MM, Simmchen J, Ma X, et al. (2016) Biohybrid Janus motors driven by Escherichia coli. Adv Mater Interfaces 3:1500505. https://doi.org/10.1002/admi.201500505

    Article  CAS  Google Scholar 

  250. Xuan M, Wu Z, Shao J, et al. (2016) Near infrared light-powered Janus mesoporous silica nanoparticle motors. J Am Chem Soc 138:6492–6497. https://doi.org/10.1021/jacs.6b00902

    Article  CAS  Google Scholar 

  251. Ma X, Jannasch A, Albrecht U-R, et al. (2015) Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett 15:7043–7050. https://doi.org/10.1021/acs.nanolett.5b03100

    Article  CAS  Google Scholar 

  252. Qin W, Peng T, Gao Y, et al. (2017) Catalysis-driven self-thermophoresis of Janus plasmonic nanomotors. Angew Chemie Int Ed 56:515–518. https://doi.org/10.1002/anie.201609121

    Article  CAS  Google Scholar 

  253. Guix M, Meyer AK, Koch B, Schmidt OG (2016) Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Sci Rep 6:21701. https://doi.org/10.1038/srep21701

    Article  CAS  Google Scholar 

  254. Gao W, D’Agostino M, Garcia-Gradilla V, et al. (2013) Multi-fuel driven Janus micromotors. Small 9:467–471. https://doi.org/10.1002/smll.201201864

    Article  CAS  Google Scholar 

  255. Baraban L, Makarov D, Schmidt OG, et al. (2013) Control over Janus micromotors by the strength of a magnetic field. Nano 5:1332–1336. https://doi.org/10.1039/C2NR32662K

    CAS  Google Scholar 

  256. Lozano C, ten Hagen B, Löwen H, Bechinger C (2016) Phototaxis of synthetic microswimmers in optical landscapes. Nat Commun 7:12828. https://doi.org/10.1038/ncomms12828

    Article  CAS  Google Scholar 

  257. Baraban L, Harazim SM, Sanchez S, Schmidt OG (2013) Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem Int Ed Engl 52:5552. https://doi.org/10.1002/anie.201301460

    Article  CAS  Google Scholar 

  258. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology. https://doi.org/10.1186/1477-3155-2-3

  259. Zhang L, Gu FX, Chan JM, et al. (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769. https://doi.org/10.1038/sj.clpt.6100400

    Article  CAS  Google Scholar 

  260. Yi Y, Sanchez L, Gao Y, Yu Y (2016) Janus particles for biological imaging and sensing. Analyst 141:3526–3539. https://doi.org/10.1039/C6AN00325G

    Article  CAS  Google Scholar 

  261. Wu LY, Ross BM, Hong S, Lee LP (2010) Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6:503–507. https://doi.org/10.1002/smll.200901604

    Article  CAS  Google Scholar 

  262. Hsieh H-Y, Huang T-W, Xiao J-L, et al. (2012) Fabrication and modification of dual-faced nano-mushrooms for tri-functional cell theranostics: SERS/fluorescence signaling, protein targeting, and drug delivery. J Mater Chem 22:20918–20928. https://doi.org/10.1039/C2JM32967K

    Article  CAS  Google Scholar 

  263. Wang Z, Wang Y, Chang Z, et al. (2016) Berberine-loaded Janus nanocarriers for magnetic field-enhanced therapy against hepatocellular carcinoma. Chem Biol Drug Des 89:464–469. https://doi.org/10.1111/cbdd.12866

    Article  CAS  Google Scholar 

  264. Shao D, Zhang X, Liu W, et al. (2016) Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in cancer therapy. ACS Appl Mater Interfaces 8:4303–4308. https://doi.org/10.1021/acsami.5b11310

    Article  CAS  Google Scholar 

  265. Schick I, Lorenz S, Gehrig D, et al. (2014) Multifunctional two-photon active silica-coated au@MnO Janus particles for selective dual functionalization and imaging. J Am Chem Soc 136:2473–2483. https://doi.org/10.1021/ja410787u

    Article  CAS  Google Scholar 

  266. Byeon JH, Park JH (2016) Use of aerosol route to fabricate positively charged au/Fe(3)O(4) Janus nanoparticles as multifunctional nanoplatforms. Sci Rep 6:35104. https://doi.org/10.1038/srep35104

    Article  CAS  Google Scholar 

  267. Li X, Zhou L, Wei Y, et al. (2014) Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 136:15086–15092. https://doi.org/10.1021/ja508733r

    Article  CAS  Google Scholar 

  268. Díez P, Sánchez A, Gamella M, et al. (2014) Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J Am Chem Soc 136:9116–9123. https://doi.org/10.1021/ja503578b

    Article  CAS  Google Scholar 

  269. Villalonga R, Díez P, Sánchez A, et al. (2013) Enzyme-controlled sensing–actuating nanomachine based on Janus Au–mesoporous silica nanoparticles. Chem – A Eur J 19:7889–7894. https://doi.org/10.1002/chem.201300723

    Article  CAS  Google Scholar 

  270. Misra AC, Bhaskar S, Clay N, Lahann J (2012) Multicompartmental particles for combined imaging and siRNA delivery. Adv Mater 24:3850–3856. https://doi.org/10.1002/adma.201200372

    Article  CAS  Google Scholar 

  271. Wang F, Pauletti GM, Wang J, et al. (2013) Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv Mater 25:3485–3489. https://doi.org/10.1002/adma.201301376

    Article  CAS  Google Scholar 

  272. Lu C, Liu X, Li Y, et al. (2015) Multifunctional Janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces 7:15395–15402. https://doi.org/10.1021/acsami.5b03423

    Article  CAS  Google Scholar 

  273. Han YD, Kim H-S, Park YM, et al. (2016) Retroreflective Janus microparticle as a nonspectroscopic optical immunosensing probe. ACS Appl Mater Interfaces 8:10767–10774. https://doi.org/10.1021/acsami.6b02014

    Article  CAS  Google Scholar 

  274. Sun X-T, Zhang Y, Zheng D-H, et al. (2017) Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens Bioelectron 92:81–86. https://doi.org/10.1016/j.bios.2017.02.008

    Article  CAS  Google Scholar 

  275. Sánchez A, Díez P, Martínez-Ruíz P, et al. (2013) Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem Commun 30:51–54. https://doi.org/10.1016/j.elecom.2013.02.008

    Article  CAS  Google Scholar 

  276. Liu Y, Li W, Perez T, et al. (2012) Self assembly of Janus ellipsoids. Langmuir 28:3–9. https://doi.org/10.1021/la2032303

    Article  CAS  Google Scholar 

  277. Li W, Gunton JD (2013) Self-assembly of Janus ellipsoids II: Janus prolate spheroids. Langmuir 29:8517–8523. https://doi.org/10.1021/la4016614

    Article  CAS  Google Scholar 

  278. Milinković K, Dennison M, Dijkstra M (2013) Phase diagram of hard asymmetric dumbbell particles. Phys Rev E 87:32128. https://doi.org/10.1103/PhysRevE.87.032128

    Article  CAS  Google Scholar 

  279. Percec V, Wilson DA, Leowanawat P, et al. (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328:1009–1014. https://doi.org/10.1126/science.1185547

    Article  CAS  Google Scholar 

  280. Kobayashi Y, Arai N (2016) Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes. Soft Matter 12:378–385. https://doi.org/10.1039/C5SM01895A

    Article  CAS  Google Scholar 

  281. Castro N, Constantin D, Davidson P, Abecassis B (2016) Solution self-assembly of plasmonic Janus nanoparticles. Soft Matter 12:9666–9673. https://doi.org/10.1039/C6SM01632D

    Article  CAS  Google Scholar 

  282. Erhardt R, Zhang M, Böker A, et al. (2003) Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres. J Am Chem Soc 125:3260–3267. https://doi.org/10.1021/ja028982q

    Article  CAS  Google Scholar 

  283. Xie Q, Davies GB, Harting J (2016) Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces. Soft Matter 12:6566–6574. https://doi.org/10.1039/C6SM01201A

    Article  CAS  Google Scholar 

  284. Zou Q-Z, Li Z-W, Lu Z-Y, Sun Z-Y (2016) Supracolloidal helices from soft Janus particles by tuning the particle softness. Nano 8:4070–4076. https://doi.org/10.1039/C5NR07011B

    CAS  Google Scholar 

  285. Liu H, Hsu C-H, Lin Z, et al. (2014) Two-dimensional nanocrystals of molecular Janus particles. J Am Chem Soc 136:10691–10699. https://doi.org/10.1021/ja504497h

    Article  CAS  Google Scholar 

  286. Li Z-W, Lu Z-Y, Sun Z-Y, An L-J (2012) Model, self-assembly structures, and phase diagram of soft Janus particles. Soft Matter 8:6693–6697. https://doi.org/10.1039/C2SM25397F

    Article  CAS  Google Scholar 

  287. Li Z-W, Lu Z-Y, Zhu Y-L, et al. (2013) A simulation model for soft triblock Janus particles and their ordered packing. RSC Adv 3:813. https://doi.org/10.1039/c2ra22108j

    Article  Google Scholar 

  288. Hong L, Cacciuto A, Luijten E, Granick S (2006) Clusters of charged Janus spheres. Nano Lett 6:2510–2514. https://doi.org/10.1021/nl061857i

    Article  CAS  Google Scholar 

  289. Ahmed S, Gentekos DT, Fink CA, Mallouk TE (2014) Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8:11053–11060. https://doi.org/10.1021/nn5039614

    Article  CAS  Google Scholar 

  290. Sacanna S, Rossi L, Pine DJ (2012) Magnetic click colloidal assembly. J Am Chem Soc 134:6112–6115. https://doi.org/10.1021/ja301344n

    Article  CAS  Google Scholar 

  291. Bianchi E, Panagiotopoulos AZ, Nikoubashman A (2015) Self-assembly of Janus particles under shear. Soft Matter 11:3767–3771. https://doi.org/10.1039/C5SM00281H

    Article  CAS  Google Scholar 

  292. Hong L, Cacciuto A, Luijten E, Granick S (2008) Clusters of amphiphilic colloidal spheres. Langmuir 24:621–625. https://doi.org/10.1021/la7030818

    Article  CAS  Google Scholar 

  293. Chen Q, Yan J, Zhang J, et al. (2012) Janus and multiblock colloidal particles. Langmuir 28:13555–13561. https://doi.org/10.1021/la302226w

    Article  CAS  Google Scholar 

  294. Chen Q, Whitmer JK, Jiang S, et al. (2011) Supracolloidal reaction kinetics of Janus spheres. Science 331:199–202. https://doi.org/10.1126/science.1197451

    Article  CAS  Google Scholar 

  295. Li W, Ruth D, Gunton JD, Rickman JM (2015) Selective encapsulation by Janus particles. J Chem Phys 142:244705. https://doi.org/10.1063/1.4922781

    Article  CAS  Google Scholar 

  296. Li W, Liu Y, Brett G, Gunton JD (2012) Encapsulation by Janus spheroids. Soft Matter 8:6027–6032. https://doi.org/10.1039/C2SM00005A

    Article  CAS  Google Scholar 

  297. Gao W, Pei A, Feng X, et al. (2013) Organized self-assembly of Janus micromotors with hydrophobic hemispheres. J Am Chem Soc 135:998–1001. https://doi.org/10.1021/ja311455k

    Article  CAS  Google Scholar 

  298. Yan J, Bloom M, Bae SC, et al. (2012) Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491:578–581. https://doi.org/10.1038/nature11619

    Article  CAS  Google Scholar 

  299. Shah AA, Schultz B, Zhang W, et al. (2015) Actuation of shape-memory colloidal fibres of Janus ellipsoids. Nat Mater 14:117–124. https://doi.org/10.1038/nmat4111

    Article  CAS  Google Scholar 

  300. Walther A, Drechsler M, Muller AHE (2009) Structures of amphiphilic Janus discs in aqueous media. Soft Matter 5:385–390. https://doi.org/10.1039/B812321G

    Article  CAS  Google Scholar 

  301. Kirillova A, Stoychev G, Ionov L, Synytska A (2014) Self-assembly behavior of hairy colloidal particles with different architectures: mixed versus Janus. Langmuir 30:12765–12774. https://doi.org/10.1021/la503455h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Elio Poggi is grateful to F.R.S.-F.R.I.A. for a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Gohy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poggi, E., Gohy, JF. Janus particles: from synthesis to application. Colloid Polym Sci 295, 2083–2108 (2017). https://doi.org/10.1007/s00396-017-4192-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4192-8

Keywords

Navigation