Skip to main content
Log in

Preparation and characterization of poly(o-anisidine)/SiC composites and study of their corrosion resistances blended with epoxy resin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

To study the differences of structure and corrosion resistances of inorganic- and organic acid-doped poly(o-anisidine) (POA)/SiC composite (PSC), hydrochloric acid (HCl)- and dodecylbenzene sulfonic acid (DBSA)-doped PSCs were prepared by in situ polymerization of o-anisidine monomer in the presence of SiC nanoparticles. The structure and morphology of PSCs (PSC-HCl and PSC-DBSA) were characterized by Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray detector. The thermal stability was studied by thermal gravimetric analysis. Epoxy coating containing PSCs and POAs was prepared on the steel surfaces, and the mechanical properties, hydrophobic behavior, and corrosion resistances of the coatings were evaluated. The results showed that the addition of pigments could improve the peeling and scratching strengths, hydrophobic behavior, and corrosion resistances of epoxy coating, and PSC-DBSA coating improved more significantly. After 7 days immersed in 3.5% NaCl solution, the PSC-DBSA coating still had a lower corrosion rate of 1.23 × 10−3 mm/year and the protection efficiency was up to 90.70%. The excellent corrosion protection ability of PSC-DBSA coating was derived from the reversible redox of POA, the increased barrier effect of SiC, and the good compatibility of hydrophobic PSC-DBSA with epoxy resin. The protection mechanism provided by PSC-DBSA coating was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gracia R, Mecerreyes D (2013) Polymers with redox properties: materials for batteries, biosensors and more Polym Chem 4(7):2206–2214

    Article  CAS  Google Scholar 

  2. Liu DY, Sui GX, Bhattacharyya D (2014) Synthesis and characterization of nanocellulose-based polyaniline conducting films Compos Sci Technol 99:31–36

    Article  CAS  Google Scholar 

  3. Yuan LY, Wan CY, Ye XR, Wu FH (2016) Facial synthesis of silver-incorporated conductive polypyrrole submicron spheres for supercapacitors Electrochim Acta 213:115–123

    Article  CAS  Google Scholar 

  4. Deshpande PP, Jadhav NG, Gelling VJ, Sazou D (2014) Conducting polymers for corrosion protection: a review J Coat Technol Res 11(4):473–494

    Article  CAS  Google Scholar 

  5. Mostafa NY, Mohamed MB, Imam NG, Alhamyani M, Heiba ZK (2016) Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites Colloid Polym Sci 294(1):215–224

    Article  CAS  Google Scholar 

  6. Ameen S, Seo HK, Akhtar MS, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye Chem Eng J 210:220–228

    Article  CAS  Google Scholar 

  7. DeBerry DW (1985) Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating J Electrochem Soc 132(5):1022–1026

    Article  CAS  Google Scholar 

  8. Ma L, Huang CQ, Gan MY (2013) Synthesis and anticorrosion properties of poly (2, 3-dimethylaniline) doped with phosphoric acid J Appl Polym Sci 127(5):3699–3704

    Article  CAS  Google Scholar 

  9. Benchikh A, Aitout R, Makhloufi L, Saidani B (2009) Soluble conducting poly (aniline-co-orthotoluidine) copolymer as corrosion inhibitor for carbon steel in 3% NaCl solution Desalination 249(2):466–474

    Article  CAS  Google Scholar 

  10. Sharma BK, Gupta AK, Khare N, Dhawan SK, Gupta HC (2009) Synthesis and characterization of polyaniline–ZnO composite and its dielectric behavior Synth Metals 159:391–395

    Article  CAS  Google Scholar 

  11. Eskizeybek V, Sarı F, Gülce H, Gülce A, Avcı A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations Appl Catal B Environ 119–120:197–206

    Article  Google Scholar 

  12. Zhang Q, Li Y, Feng Y, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor Electrochim Acta 90:95–100

    Article  CAS  Google Scholar 

  13. Mostafaei A, Nasirpouri F (2014) Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints Prog Org Coat 77(1):146–159

    Article  CAS  Google Scholar 

  14. Bhanvase BA, Sonawane SH (2010) New approach for simultaneous enhancement of anticorrosive and mechanical properties of coatings: application of water repellent nano CaCO3-PANI emulsion nanocomposite in alkyd resin Chem Eng J 156(1):177–183

    Article  CAS  Google Scholar 

  15. Kormányos A, Endrődi B, Ondok R, Sápi A, Janáky C (2016) Controlled photocatalytic synthesis of core–shell SiC/polyaniline hybrid nanostructures Materials 9:201–213

    Article  Google Scholar 

  16. Mičušík M, Omastová M, Boukerma K, Albouy A, Chehimi MM, Trchová M, Fedorko P (2007) Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant Polym Eng Sci 47:1198–1206

    Article  Google Scholar 

  17. Olad A, Barati M, Behboudi S (2012) Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron Prog Org Coat 74(1):221–227

    Article  CAS  Google Scholar 

  18. Feng H, Wang XD, Wu DZ (2013) Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties Ind Eng Chem Res 52(30):10160–10171

    Article  CAS  Google Scholar 

  19. Zhang YJ, Shao YW, Meng GZ, Zhang T, Li P, Wang FH (2015) Evaluation of the corrosion protection of defective polyaniline/epoxy coating by localized electrochemical impedance spectroscopy J Coat Technol Res 12(4):777–785

    Article  CAS  Google Scholar 

  20. Gupta G, Birbilis N, Cook AB, Khanna AS (2013) Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3 Corros Sci 67:256–267

    Article  CAS  Google Scholar 

  21. Hao JY, Wang YY, Tong XL, Jin GQ, Guo XY (2012) Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation Int J Hydrog Energy 37(20):15038–15044

    Article  CAS  Google Scholar 

  22. Ashokan S, Ponnuswamy V, Jayamurugan P, Chandrasekaran J, Rao YVS (2015) Influence of the counter ion on the properties of organic and inorganic acid doped polyaniline and their Schottky diodes Superlattice Micro 85:282–293

    Article  CAS  Google Scholar 

  23. Li S, Gan MY, Ma L, Yan J, Tang JH, Fu DD, Li ZT, Bai YQ (2013) Preparation and microwave absorbing properties of polyaniline-modified silicon carbide composites High Perform Polym 25:901–906

    Article  Google Scholar 

  24. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines Am J Polym Sci 2(2):5–13

    Article  CAS  Google Scholar 

  25. Waghmode BJ, Patil SH, Jahagirdar MM, Patil VS, Waichal RP, Malkhede DD, Sathaye SD, Patil KR (2014) Studies on morphology of polyaniline films formed at liquid–liquid and solid–liquid interfaces at 25 and 5 °C, respectively, and effect of doping Colloid Polym Sci 292(5):1079–1089

    Article  CAS  Google Scholar 

  26. Chuang FY, Yang SM (2008) Cerium dioxide/polyaniline core-shell nanocomposites J Colloid Interface Sci 320(1):194–201

    Article  CAS  Google Scholar 

  27. Saini P, Arora M, Gupta G, Gupta BK, Singh VN, Choudhary V (2013) High permittivity polyaniline–barium titanate nanocomposites with excellent electromagnetic interference shielding response Nano 5(10):4330–4336

    CAS  Google Scholar 

  28. Jiang J, Ai LH, Liu AH (2010) A novel poly(o-anisidine)/CoFe2O4 multifunctional nanocomposite: preparation, characterization and properties Synth Metals 160:333–336

    Article  CAS  Google Scholar 

  29. Gupta K, Jana PC, Meikap AK (2010) Optical and electrical transport properties of polyaniline–silver nanocomposite Synth Metals 160:1566–1573

    Article  CAS  Google Scholar 

  30. Niu MJ, Kong XJ (2015) Efficient biodiesel production from waste cooking oil using p-toluenesulfonic acid doped polyaniline as a catalyst RSC Adv 5(35):27273–27277

    Article  CAS  Google Scholar 

  31. Zhang HM, Zhou WQ, Du YK, Xu JK, Yang P (2010) Electrochemical preparation of nano-composites of poly (o-methoxyaniline) and carbon nanotubes J Mater Sci 45(21):5795–5801

    Article  CAS  Google Scholar 

  32. Hu CB, Li Y, Kong YZ, Ding YS (2016) Preparation of poly (o-toluidine)/nano ZnO/epoxy composite coating and evaluation of its corrosion resistance properties Synth Metals 214:62–70

    Article  CAS  Google Scholar 

  33. Liang CS, Lv ZF, Zhu YL, Xu SA (2014) Molybdate-based conversion treatment for improving the peeling strength between aluminum foil and polypropylene grafted with glycidyl methacrylate Surf Coat Technol 249:1–5

    Article  CAS  Google Scholar 

  34. Yuan JJ, Zhou SX, Gu GX, Wu LM (2005) Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings J Mater Sci 40(15):3927–3932

    Article  CAS  Google Scholar 

  35. Jiang H, Browning R, Liu P, Chang TA, Sue HJ (2011) Determination of epoxy coating wet-adhesive strength using a standardized ASTM/ISO scratch test J Coat Technol Res 8(2):255–263

    Article  CAS  Google Scholar 

  36. Chang CH, Huang TC, Peng CW, Yeh TC, Lu HI, Hung WI, Weng CJ, Yang TI, Yeh JM (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites Carbon 50(14):5044–5051

    Article  CAS  Google Scholar 

  37. Qing YQ, Yang CN, Yu NN, Shang Y, Sun YZ, Wang LS, Liu CS (2016) Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance Chem Eng J 290:37–44

    Article  CAS  Google Scholar 

  38. Shinde V, Sainkar SR, Gangal SA, Patil PP (2006) Synthesis of corrosion inhibitive poly (2, 5-dimethylaniline) coatings on low carbon steel J Mater Sci 41(10):2851–2858

    Article  CAS  Google Scholar 

  39. Ghoreishi SM, Shabani-Nooshabadi M, Behpour M, Jafari Y (2012) Electrochemical synthesis of poly(o-anisidine) and its corrosion studies as a coating on aluminum alloy 3105 Prog Org Coat 74(3):502–510

    Article  Google Scholar 

  40. Chaudhari S, Patil PP (2011) Inhibition of nickel coated mild steel corrosion by electrosynthesized polyaniline coatings Electrochim Acta 56(8):3049–3059

    Article  CAS  Google Scholar 

  41. Chaudhari S, Sainkar SR, Patil PP (2007) Anticorrosive properties of electrosynthesized poly(o-anisidine) coatings on copper from aqueous salicylate medium J Phys D Appl Phys 40(2):520–533

    Article  CAS  Google Scholar 

  42. Deyab MA (2014) Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell J Power Sources 268:50–55

    Article  CAS  Google Scholar 

  43. Karpakam V, Kamaraj K, Sathiyanarayanan S, Venkatachari G, Ramu S (2011) Electrosynthesis of polyaniline-molybdate coating on steel and its corrosion protection performance Electrochim Acta 56(5):2165–2173

    Article  CAS  Google Scholar 

  44. Sasikumar Y, Kumar AM, Gasem ZM, Ebenso EE (2015) Hybrid nanocomposite from aniline and CeO2 nanoparticles: surface protective performance on mild steel in acidic environment Appl Surf Sci 330:207–215

    Article  CAS  Google Scholar 

  45. Mert BD, Yazıcı B (2011) The electrochemical synthesis of poly (pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties Mater Chem Phys 125(3):370–376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of China (Nos. 51474057, 51274057) and the Fundamental Research Funds for the Central Universities (Nos. N162502003, N162410002-15) for their financial support. The first author would also like to acknowledge Kai Yu for providing the FESEM testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Li, Y. & Ding, Y. Preparation and characterization of poly(o-anisidine)/SiC composites and study of their corrosion resistances blended with epoxy resin. Colloid Polym Sci 295, 1937–1950 (2017). https://doi.org/10.1007/s00396-017-4152-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4152-3

Keywords

Navigation