Skip to main content
Log in

Studies on morphology of polyaniline films formed at liquid–liquid and solid–liquid interfaces at 25 and 5 °C, respectively, and effect of doping

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

It is well accepted that the morphology of the nanomaterials has great effect on the properties and hence their applications. Therefore, morphology of materials has become a focus of research in the scientific world. The present study shows that interfacial polymerization and subsequent self-assembly provides a control over the morphology, nanorod/nanosheet, of polyaniline (PANI) films synthesized by liquid–liquid interface reaction technique and solid–liquid interface reaction technique. The synthesized PANI films and its particulate structure are characterized by using various spectroscopic techniques such as UV–visible, ATR-IR, Raman and XPS. The study confirmed the formation, the structure, the size and shape of particles and morphology of PANI by using analytical techniques namely, SAED, SEM and TEM. An important observation is that doping with HCl significantly improves the nanorod formation at the interface. The doped PANI electrode exhibits a higher area with rectangular shape in CV cycle and better cycle stability when compared with the performance of undoped PANI films. We believe that the results of these studies can give valuable leads to manoeuvre formation of PANI films with desired morphology for various applications.

Time and temperature-dependent morphology of PANI layer leading to the formation of one/two-dimensional structures namely, PANI rods/sheets, is achieved by monitoring of self-assembly of nano particulate film formed at liquid–liquid/solid–liquid interfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society 126:851–855

    Article  CAS  Google Scholar 

  2. Fan H, Wang H, Zhao N, Zhanga X, Xu J (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotube for high performance supercapicator electrode. Journal of Materials Chemistry 22:2774–2780

    Article  CAS  Google Scholar 

  3. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science 35:1420–1481

    Article  CAS  Google Scholar 

  4. Kuila BK, Nandan B, Bohme M, Janke A, Stamm M (2009) Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical Communications 14:5749–5751

    Article  Google Scholar 

  5. Henglein A (1993) Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The Journal of Physical Chemistry 97:5457–5471

    Article  CAS  Google Scholar 

  6. Ung T, Giersig M, Dunstan D, Mulvanty P (1997) Spectroelectrochemistry of colloidal silver. Langmuir 13:1773–1782

    Article  CAS  Google Scholar 

  7. Brus L (1996) Semiconductor colloids:individual nanocrystals, opals and porous silicon. Current Opinion in Colloid & Interface Science 2:197–201

    Article  Google Scholar 

  8. Laura LB, Christopher KO (1997) Nanocomposite materials for optical applications. Chemistry of Materials 9:1302–1317

    Article  Google Scholar 

  9. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Letters 4:491–496

    Article  CAS  Google Scholar 

  10. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Nano Letters 4:671–675

    Article  CAS  Google Scholar 

  11. Sun S, Hoa, Ho-Si P, Harrison DJ (1991) Preparation of active Langmuir–Blodgett films of glucose oxidase. Langmuir 7:727–737

    Article  CAS  Google Scholar 

  12. Di W, Ivaska A (2006) Electrochemical biosensors based on polyaniline. Chemist-Analyst 51:839–852

    Google Scholar 

  13. Ansari R (2006) Application of polyaniline and its composites for adsorption/recovery of chromium (VI) from aqueous solutions. Acta Chimica Slovenica 53:88–94

    CAS  Google Scholar 

  14. Amaya T, Saiom D, Hirao T (2007) Template synthesis of polyaniline/Pd nanoparticle and its catalytic application. Tetrahedron Letters 48:2729–2732

    Article  CAS  Google Scholar 

  15. Park JE, Park SG, Koukitu A, Hatozaki O, Oyama N (2004) Effect of adding Pd nanoparticles to dimercaptan-polyaniline cathodes for lithium polymer battery. Synthetic Metals 140:121–126

    Article  CAS  Google Scholar 

  16. Chen Z, Xu L, Li W, Waje M, Yan Y (2006) Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 17:5254

    Article  CAS  Google Scholar 

  17. Lamy C, Belgsir EM, Le’ger JM (2004) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). Journal of Applied Electrochemistry 31:799–809

    Article  Google Scholar 

  18. Chiou NR, Guan J, Epstein A (2007) Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nature Nanotechnology 2:354–357

    Article  CAS  Google Scholar 

  19. Liu J, Zhou M, Fan LZ, Li P, Qu X (2010) Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochimica Acta 55:5819–5822

    Article  CAS  Google Scholar 

  20. Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X, Li H, Wei F, Lu Y (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Advanced Functional Materials 19:3420–3426

    Article  CAS  Google Scholar 

  21. Inamdar AI, Kim YS, Sohn JS, Im H, Kim H, Kim DY, Kalubarme RS, Park CH (2011) Supercapacitive characteristics of electrodeposited polyaniline thin films grown on indium doped tin oxide substrates. Journal of the Korean Physical Society 59:145–149

    Article  CAS  Google Scholar 

  22. Tseng RJ, Baker CO, Shedd B, Huang J, Kaner RB, Ouyang J, Yang Y (2007) Charge transfer effect in the polyaniline-gold nanoparticle memory system. Applied Physics Letters 90:53101

    Article  Google Scholar 

  23. Kaynak A, Wang L, Hurren C, Wang X (2002) Characterization of conductive polypyrrole coated wool yarn. Fiber Polymer 3:24–30

    Article  CAS  Google Scholar 

  24. Amm DT, Johnson DJ, Laursen T, Gupta SK (1992) Fabrication of ultrathin metal oxide films using Langmuir–Blodgett deposition. Applied Physics Letters 61:522–524

    Article  Google Scholar 

  25. Sathaye SD, Patil KR, Paranjape DV (1996) process for preparation of uniform thin films of metal oxide, metal chalcogenides and metal halide. U S Patent 5, 549, 931

  26. Sathaye SD, Patil KR, Paranjape DV, Mitra A, Awate SV, Mandale AB (2000) Preparation of Q-cadmium sulfide ultrathin films by a new liquid–liquid interface reaction technique (LLIRT). Langmuir 16:3487–3490

    Article  CAS  Google Scholar 

  27. Petty MC, Monkman AP, Goldenberg LM (1994) A comparative study of the electrochemical properties of dip coated, spun and Langmuir–Blodgett films of polyaniline. Journal of the Electrochemical Society 141:1573–1576

    Article  Google Scholar 

  28. Sathaye SD, Patil KR, Kulkarni SD, Bakre PP, Pradhan SD, Sarwade BD, Shintre SN (2003) Modification of spin coating method and its application to grow thin films of cobalt ferrite. Journal of Materials Science 38:29–33

    Article  CAS  Google Scholar 

  29. Patil KR, Hwang YK, Kim MJ, Chang JS, Park SE (2004) Preparation of thin films comprising palladium nanoparticles by a solid–liquid interface reaction technique. J of Colloid and Interface Science 276:333–338

    Article  CAS  Google Scholar 

  30. He Y (2005) Interfacial synthesis and characterization of polyaniline nanofibers. Material science and engineering B 122:76–79

    Article  Google Scholar 

  31. Shukla SK, Bharadvaja A, Tiwari A, Parashar GK, Dubey GC (2010) Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Adv Mat Lett 1:129–134

    Article  CAS  Google Scholar 

  32. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HY (2010) Sulfamic acid doped polyaniline nanofibers thin film based counter electrode: application in dye sensitized solar cells. The Journal of Physical Chemistry C114:4760–4764

    Google Scholar 

  33. Zang XY, Goux WJ, Warren JC, Sanjeev KM (2004) Synthesis of polyaniline nanofibers by nanofiber seeding. Journal of the American Chemical Society 126:4502–4503

    Article  Google Scholar 

  34. Izumi MS, Gustavo FS, Temperini LA (2008) Surface enhanced resonance Raman scattering of polyaniline on silver and gold colloids. The Journal of Physical Chemistry 112:16330–16340

    Google Scholar 

  35. Tamburri E, Orlanducci S, Guglielmotti V, Reina G, Rossi M, Terranova ML (2011) Engineering detonation nanodiamond-polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52:5001–5008

    Article  CAS  Google Scholar 

  36. Nalwa H (1991) Structural determination of a semiconductive tetramer of aniline by IR, UV–visible, ESR, XPS and mass spectroscopy techniques. Journal of Materials Science 26:1683–1690

    Article  CAS  Google Scholar 

  37. Snauwaert P, Lazzaroni R, Riga J, Verbist JJ (1987) Electronic structure of polyaniline and substituted derivatives. Synthetic Metals 18:335–340

    Article  CAS  Google Scholar 

  38. Salaneck WR, Lundstrom I, Hjertberg T, Duke CB, Conwell E, Paton A, MacDiarmid AG, Somasiri LD, Huang WS, Richter AF (1987) Electronic structure of some polyaniline. Synthetic Metals 18:291–296

    Article  CAS  Google Scholar 

  39. Huang JX, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angewandte Chemie, International Edition 43:5817–5821

    Article  CAS  Google Scholar 

  40. Jnata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nature Materials 2:19–24

    Article  Google Scholar 

  41. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensor. Journal of the American Chemical Society 125:314–315

    Article  CAS  Google Scholar 

  42. Chiou NR, Lu C, Guan J, Lee J, Epstein J (2007) Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nature Nanotechnology 2:354–357

    Article  CAS  Google Scholar 

  43. Zhang X, Chan-Yu-King R, Jase A, Manohar SK (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals 145:23–29

    Article  CAS  Google Scholar 

  44. Tran HD, D’Arcy JM, Wang Y, Beltramo JP, Kaner RB (2011) The oxidation of aniline to produce polyaniline: a process yielding many different nanoscale structures. J Mate Chem 21:3534–3550

    Article  CAS  Google Scholar 

  45. Pereira Da Silva MA, Balogh DT, Eiras C, Kleinke MU, Faria RM (2010) Analysis of polyaniline films using atomic force microscopy. Molecular Crystals and Liquid Crystals 374:191–200

    Article  Google Scholar 

  46. Pud AA, Tabellout M, Kassibs N, Korzhenko AA, Rogalsky SP, Shapoval GS, Houze F, Schneegans O, Emery JR (2001) The poly(ethylene terephthalate)/polyaniline composite: AFM, DRS and EPR investigations of some doping effects. Journal of Materials Science 36:3355–3363

    Article  CAS  Google Scholar 

  47. Nuraje N, Su K, Yang NL, Matsui H (2008) Liquid/liquid interfacial polymerisation to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2:502–506

    Article  CAS  Google Scholar 

  48. Ke WJ, Lin GH, Hsu CP, Chen CM, Cheng YS, Jen TH, Chen SA (2011) Solution processable self doped polyaniline as hole transport layer for inverted polymer soler cells. Journal of Materials Chemistry 21:13483–13489

    Article  CAS  Google Scholar 

  49. Chiou NR, Epestein AJ (2005) A simple approach to control the growth of polyaniline nanofibers. Synthetic Metals 153:69–72

    Article  CAS  Google Scholar 

  50. Huang JX, Kaner RB (2004) Flash welding of conducting polymer nanofibres. Nature Materials 3:783–786

    Article  CAS  Google Scholar 

  51. Zhang X, Chechik V, Smith DK, Walton PH, Duhme-Klair AK (2008) Controlled synthesis of optically active polyaniline nanorods and nanostructured gold microspheres using tetrachloroaurate as an efficient oxidant of aniline. Macromolecules 41:3417–3421

    Article  CAS  Google Scholar 

  52. Chen Y, Yang G, Zhang Z, Yang X, Hou W, Zhu J (2010) Polyaniline intercalated layered vanadium oxide nanocomposites—one pot hydrothermal synthesis and application in lithium battery. Nanoscale 2:2131–2138

    Article  CAS  Google Scholar 

  53. Singu BS, Srinivasan P, Srinivas P (2012) Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor batteries and energy storage. J Electrochem Society 159:A6–A13

    Article  Google Scholar 

  54. Sapurina I, Riede A, Stejskal J (2001) In-situ polymerized polyaniline films: film formation. Synthetic Metals 123:503–507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashinath R. Patil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 9.50 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waghmode, B.J., Patil, S.H., Jahagirdar, M.M. et al. Studies on morphology of polyaniline films formed at liquid–liquid and solid–liquid interfaces at 25 and 5 °C, respectively, and effect of doping. Colloid Polym Sci 292, 1079–1089 (2014). https://doi.org/10.1007/s00396-013-3150-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3150-3

Keywords

Navigation