Skip to main content
Log in

Formation of organogels with aggregation-induced emission characteristics triggered by thermal and ultrasound

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermal- and ultrasound-triggered organogels formed by an imidazolium-based salt-free catanionic surfactant 1-tetradecyl-3-methylimidazolium methyl orange [C14mim][MO] in dimethyl formamide (DMF) were investigated. The [C14mim][MO] organogels exhibited luminescent property owing to the aggregation-induced emission (AIE) by noncovalent interaction and displayed excellent mechanical strength and reversible sol–gel transition. Furthermore, the self-assembly behavior of [C14mim][MO] in mixed solvents was also investigated. It can be observed that the addition of poor solvents (toluene, H2O) in DMF weakened the mechanical strength of the gels. Besides, the fluorescence of gel performs opposite changes towards different kinds of solvent that the addition of solvents without benzene ring structure (ethanol and dichloromethane) reduced the fluorescence while the addition of solvents containing benzene ring structure (xylene, aniline) enhanced the fluorescence greatly owing to the π–π stacking of solvent and MO. These results reveal the important role of heat, ultrasound, and solvents in the formation of the supramolecular organogels and may help us to design new soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Babu SS, Praveen VK, Ajayaghosh A (2014) Chem Rev 114:1973–2129

    Article  CAS  Google Scholar 

  2. Nakanishi T, (2011) Wiley

  3. Han J, You J, Li X, Duan P, Liu M (2017) Adv Mater:1606503

  4. Ma Y, Ma H, Yang Z, Ma J, Su Y, Li W, Lei Z (2015) Langmuir 31:4916–4923

    Article  CAS  Google Scholar 

  5. Babu SS, Prasanthkumar S, Ajayaghosh A (2012) Angew Chem Int Ed 51:1766–1776

    Article  CAS  Google Scholar 

  6. Bastiat G, Plourde F, Motulsky A, Furtos A, Dumont Y, Quirion R, Fuhrmann G, Leroux JC (2010) Biomaterials 31:6031–6038

    Article  CAS  Google Scholar 

  7. Ehrick JD, Deo SK, Browning TW, Bachas G, Madou MJ, Daunert S (2010) Biomaterials 31:6031–6038

    Article  Google Scholar 

  8. Kawano S i, Fujita N, Shinkai S (2005) Chem Eur J 11:4735–4742

    Article  CAS  Google Scholar 

  9. Gu X, Bai B, Wang H, Li M (2017) RSC Adv 7:218–223

    Article  CAS  Google Scholar 

  10. Islam S, Bidin N, Riaz S, Krishnan G, Naseem S (2016) Sens Actuators A 238:8–18

    Article  CAS  Google Scholar 

  11. Dautel OJ, Robitzer M, Lère-Porte JP, Serein-Spirau F, Moreau JJ (2006) J Am Chem Soc 128:16213–16223

    Article  CAS  Google Scholar 

  12. Chen CT, Chen CH, Ong TG (2013) J Am Chem Soc 135:5294–5297

    Article  CAS  Google Scholar 

  13. Samai S, Biradha K (2012) Chem Mater 24:1165–1173

    Article  CAS  Google Scholar 

  14. Lee SH, Sumranjit J, Tongkate P, Chung BH, Lee HJ (2014) Electrochim Acta 123:198–204

    Article  CAS  Google Scholar 

  15. Zhao Z, Lam JW, Tang BZ (2013) Soft Matter 9:4564–4579

    Article  CAS  Google Scholar 

  16. Ajayaghosh A, Praveen VK (2007) Acc Chem Res 40:644–656

    Article  CAS  Google Scholar 

  17. Takeshi N (2005) J Am Chem Soc 127:9324–9325

    Article  Google Scholar 

  18. Cravotto G, Cintas P (2009) Chem Soc Rev 38:2684–2697

    Article  CAS  Google Scholar 

  19. Wu J, Yi T, Shu T, Yu M, Zhou Z, Xu M, Zhou Y, Zhang H, Han J, Li F (2008) Angew Chem 120:1079–1083

    Article  Google Scholar 

  20. Yu X, Chen L, Zhang M, Yi T (2014) Chem Soc Rev 43:5346–5371

    Article  CAS  Google Scholar 

  21. Komiya N, Muraoka T, Iida M, Miyanaga M, Takahashi K, Naota T (2011) J Am Chem Soc 133:16054–16061

    Article  CAS  Google Scholar 

  22. Cheng N, Hu Q, Bi Y, Xu W, Gong Y, Yu L (2014) Langmuir 30:9076–9084

    Article  CAS  Google Scholar 

  23. Jiao J, Dong B, Zhang H, Zhao Y, Wang X, Wang R, Yu L (2012) J Phys Chem B 116:958–965

    Article  CAS  Google Scholar 

  24. Brown P, Butts CP, Eastoe J, Fermin D, Grillo I, Lee HC, Parker D, Plana D, Richardson RM (2012) Langmuir 28:2502–2509

    Article  CAS  Google Scholar 

  25. Jiao J, Han B, Lin M, Cheng N, Yu L, Liu M (2013) J Colloid Interface Sci 412:24–30

    Article  CAS  Google Scholar 

  26. Beharry AA, Woolley GA (2011) Chem Soc Rev 40:4422–4437

    Article  CAS  Google Scholar 

  27. Zhang Y, Zimmerman SC (2012) Beilstein J Org Chem 8:486–495

    Article  CAS  Google Scholar 

  28. Chen D, Liu H, Kobayashi T, Yu H (2010) J Mater Chem 20:3610–3614

    Article  CAS  Google Scholar 

  29. Rajaganesh R, Gopal A, Mohan Das T, Ajayaghosh A (2012) Org Let 14:748–751

    Article  CAS  Google Scholar 

  30. Shen J, Xin X, Liu G, Pang J, Song Z, Xu G, Yuan S (2016) J Phys Chem C 120:27533–27540

    Article  CAS  Google Scholar 

  31. Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  32. Estroff L, Hamilton A (2004) Chem Rev 104:1201–1217

    Article  CAS  Google Scholar 

  33. Maity S, Kumar P, Haldar D (2011) Soft Matter 7:5239–5245

    Article  CAS  Google Scholar 

  34. Zhu G, Dordick JS (2006) Chem Mater 18:5988–5995

    Article  CAS  Google Scholar 

  35. Zhang M, Meng L, Cao X (2012) Soft Matter 8:4494–4498

    Article  Google Scholar 

  36. Song S, Feng L, Song A, Hao J (2012) J Phys Chem B 116:12850–12856

    Article  CAS  Google Scholar 

  37. Xue R, Xin X, Wang L, Shen J, Ji F, Li W, Jia C, Xu G (2015) Phy Chem Chem Phy 17:5431–5440

    Article  CAS  Google Scholar 

  38. Weng W, Beck JB, Jamieson AM, Rowan SJ (2006) J Am Chem Soc 128:11663–11672

    Article  CAS  Google Scholar 

  39. Fatás P, Bachl J, Oehm S, Jiménez AI, Cativiela C, Díaz Díaz D (2013) Chem Eur J 19:8861–8874

    Article  Google Scholar 

  40. Lv K, Zhang L, Liu M (2014) Langmuir 30:9295–9302

    Article  CAS  Google Scholar 

  41. Jin Q, Zhang L, Liu M (2013) Chem Eur J 19:9234–9241

    Article  CAS  Google Scholar 

  42. Arduengo III AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  43. Shi L, Zheng L (2012) J Phys Chem B 116:2162–2172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21573130, 21173128) and Young Scholars Program of Shandong University (2016WLJH20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiling Yuan or Xia Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Ding, P., Gao, L. et al. Formation of organogels with aggregation-induced emission characteristics triggered by thermal and ultrasound. Colloid Polym Sci 295, 1765–1772 (2017). https://doi.org/10.1007/s00396-017-4150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4150-5

Keywords

Navigation