Skip to main content
Log in

Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol–gel method and their magnetorheology

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Using a sol–gel method, silica-coated magnetite (Fe3O4 @SiO2) core-shell nanoparticles were fabricated following a two-step process. In the first step, the Fe3O4 nanoparticles were prepared via a solvothermal method. In the second step, the Fe3O4 nanoparticles were coated with SiO2 formed through the hydrolyzation of tetraethyl orthosilicate. The structure and properties of the core-shell Fe3O4 @SiO2 nanoparticles were characterized and the results showed that Fe3O4 @SiO2 nanoparticles are a soft magnetic material. A magnetorheological (MR) suspension was prepared based on the synthesized Fe3O4 @SiO2 nanoparticles dispersed in silicone oil and measured using a rotational rheometer at various magnetic field strengths. Using a rotational rheometer, the MR properties of the Fe3O4 @SiO2 in silicone oil, including shear stress, shear viscosity, and yield stress were examined under an applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu ZL, Wang HB, Lu QH, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283:258–262

    Article  CAS  Google Scholar 

  2. Kim DK, Mikhaylova M, Wang F-H, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater 15:4343–4351

    Article  CAS  Google Scholar 

  3. Kobayashi Y, Horie M, Konno M, Rodriguez-Gonzalez B, Liz-Marzan LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem B 107:7420–7425

    Article  CAS  Google Scholar 

  4. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  5. Du GH, Liu ZL, Xia X, Chu Q, Zhang SM (2006) Characterization and application of Fe3O4/SiO2 nanocomposites. J Sol–gel Sci Technol 39:285–291

    Article  CAS  Google Scholar 

  6. Azurdia JA, Marchal J, Shea P, Sun HP, Pan XQ, Laine RM (2006) Liquid-feed flame spray pyrolysis as a method of producing mixed-metal oxide nanopowders of potential interest as catalytic materials. Nanopowders along the NiO-Al2O3 tie line including (NiO)0.22(Al2O3)0.78, a new inverse spinel composition. Chem Mater 18:2458–2458

    Article  CAS  Google Scholar 

  7. Sivakov V, Petersen C, Daniel C, Shen H, Mucklich F, Mathur S (2005) Laser induced local and periodic phase transformations in iron oxide thin films obtained by chemical vapour deposition. Appl Surf Sci 247:513–517

    Article  CAS  Google Scholar 

  8. Sakabe Y, Yamashita Y, Yamamoto H (2005) Dielectric properties of nano-crystalline BaTiO3 synthesized by micro-emulsion method. J Eur Ceram Soc 25:2739–2742

    Article  CAS  Google Scholar 

  9. Fujii T, Matsusue I, Nakatsuka D, Nakanishi M, Takada J (2011) Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Mater Chem Phys 129:805–809

    Article  CAS  Google Scholar 

  10. Shi D, Hu GH, Li RKY (2006) Concept of nano-reactor for the control of the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt. Chem Eng Sci 61:3780–3784

    Article  CAS  Google Scholar 

  11. Cao JQ, Wang YX, Yu JF, Xia JY, Zhang CF, Yin DZ, Hafeli UO (2004) Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J Magn Magn Mater 277:165–174

    Article  CAS  Google Scholar 

  12. Sahin M, Ayranci K, Kosun E, Ayranci E (2009) Density, sound velocity and viscosity properties of aqueous sodium metatungstate solutions and an application of these solutions in heavy mineral separations. Chem Geol 264:96–100

    Article  CAS  Google Scholar 

  13. Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W (2002) Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater 252:363–366

    Article  CAS  Google Scholar 

  14. Pai DM, Springett BE (1993) Physics of electrophotography. Rev Mod Phys 65:163–211

    Article  CAS  Google Scholar 

  15. Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  CAS  Google Scholar 

  16. Shen LF, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  CAS  Google Scholar 

  17. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 194:185–196

    Article  CAS  Google Scholar 

  18. Li Q, Xuan YM, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30:109–116

    Article  CAS  Google Scholar 

  19. Hong RY, Li JH, Zhang SZ, Li HZ, Zheng Y, Ding JM, Wei DG (2009) Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Appl Surf Sci 255:3485–3492

    Article  CAS  Google Scholar 

  20. Bocanegra-Diaz A, Mohallem NDS, Novak MA, Sinisterra RD (2004) Preparation of ferrofluid from cyclodextrin and magnetite. J Magn Magn Mater 272:2395–2397

    Article  Google Scholar 

  21. Li ZW, Zhu YF (2003) Surface-modification of SiO2 nanoparticles with oleic acid. Appl Surf Sci 211:315–320

    Article  CAS  Google Scholar 

  22. Goguet A, Schweich D, Candy JP (2003) Preparation of a Pt/SiO2 catalyst II. Temperature-programmed decomposition of the adsorbed platinum tetrammine hydroxide complex under flowing hydrogen, oxygen, and argon. J Catal 220:280–290

    Article  CAS  Google Scholar 

  23. Li L, Zhang LY, Yao X (2004) Preparation and characterization of thick porous SiO2 film for multilayer pyroelectric thin film IR detector. Ceram Int 30:1843–1846

    Article  CAS  Google Scholar 

  24. Nontasorn P, Chavadej S, Rangsunvigit P, O’Haver JH, Chaisirimahamorakot S, Na-Ranong N (2005) Admicellar polymerization modified silica via a continuous stirred-tank reactor system: Comparative properties of rubber compounding. Chem Eng J 108:213–218

    Article  CAS  Google Scholar 

  25. Kamimura K, Kobayashi D, Okada S, Mizuguchi T, Ryu E, Hayashibe R, Nagaune F, Onuma Y (2001) Preparation and characterization of SiO2/6H-SiC metal-insulator-semiconductor structure using TEOS as source material. Appl Surf Sci 184:346–349

    Article  CAS  Google Scholar 

  26. Santiago-Quinones DI, Acevedo A, Rinaldi C (2009) Magnetic and magnetorheological characterization of a polymer liquid crystal ferronematic. J Appl Phys 105

  27. Bica I (2009) Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater Lett 63:2230–2232

    Article  CAS  Google Scholar 

  28. Mrlik M, Ilcikova M, Pavlinek V, Mosnacek J, Peer P, Filip P (2013) Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J Colloid Interf Sci 396:146–151

    Article  CAS  Google Scholar 

  29. Pfeil KV, Graham MD, Klingenberg DJ, Morris JF (2003) Structure evolution in electrorheological and magnetorheological suspensions from a continuum perspective. J Appl Phys 93:5769–5779

    Article  Google Scholar 

  30. Bica I, Anitas EM, Averis LME, Bunoiu M (2015) Magnetodielectric effects in composite materials based on paraffin, carbonyl iron and graphene. J Ind Eng Chem 21:1323–1327

    Article  CAS  Google Scholar 

  31. Bica I, Anitas EM (2015) Averis LME (2015) Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: effects of the magnetic field. J Ind Eng Chem 28:86–90

    Article  CAS  Google Scholar 

  32. Carlson JD (2002) What makes a good MR fluid? J Intel Mater Syst Struct 13:431–435

    Article  Google Scholar 

  33. Hu W, Cook E, Wereley NM (2007) Energy absorber using a magnetorheological bypass valve filled with ferromagnetic beads. IEEE Trans Magn 43:2695–2697

    Article  Google Scholar 

  34. Li WH, Du H, Guo NQ (2004) Dynamic behavior of MR suspensions at moderate flux densities. Mater Sci Eng A-Struct 371:9–15

    Article  Google Scholar 

  35. Choi HJ, Jang IB, Lee JY, Pich A, Bhattacharya S, Adler HJ (2005) Magnetorheology of synthesized core-shell structured nanoparticle. IEEE Trans Magn 41:3448–3450

    Article  CAS  Google Scholar 

  36. Liu YD, Choi HJ, Choi SB (2012) Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids Surf A 403:133–138

    Article  CAS  Google Scholar 

  37. Chae HS, Piao SH, Choi HJ (2015) Fabrication of spherical Fe3O4 particles with a solvothermal method and their magnetorheological characteristics. J Ind Eng Chem 29:129–133

    Article  CAS  Google Scholar 

  38. Stober AFW (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69

    Article  Google Scholar 

  39. Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kumar M, Dhawan SK, Kong BS, Chung JS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420

    Article  CAS  Google Scholar 

  40. Nallathambi G, Ramachandran T, Rajendran V, Palanivelu R (2011) Effect of silica nanoparticles and BTCA on properties of cotton fabrics. Mater Res-Ibero-Am J 14:552–559

    CAS  Google Scholar 

  41. Balau O, Bica D, Koneracka M, Kopcansky P, Susan-Resiga D, Vekas L (2002) Rheological and magnetorheological behaviour of some magnetic fluids on polar and nonpolar carrier liquids. Int J Mod Phys B 16:2765–2771

    Article  CAS  Google Scholar 

  42. Ahmadkhanlou F, Mahboob M, Bechtel S, Washington G (2010) An improved model for magnetorheological fluid-based actuators and sensors. J Intel Mater Syst Struct 21:3–18

    Article  Google Scholar 

  43. Fang FF, Choi HJ (2010) Fabrication of multiwalled carbon nanotube-wrapped magnetic carbonyl iron microspheres and their magnetorheology. Colloid Polym Sci 288:79–84

    Article  CAS  Google Scholar 

  44. Park BJ, Hong MK, Choi HJ (2009) Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology. Colloid Polym Sci 287:501–504

    Article  CAS  Google Scholar 

  45. Fang FF, Choi HJ, Seo Y (2010) Sequential coating of magnetic carbonyl iron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl Mater Interfaces 2:54–60

    Article  CAS  Google Scholar 

  46. Liu YD, Fang FF, Choi HJ (2011) Core-shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. Colloid Polym Sci 289:1295–1298

    Article  CAS  Google Scholar 

  47. Huang H, You B, Zhou S, Wu L (2007) Rheological behavior of aqueous organosilicone resin emulsion stabilized by colloidal nanosilica particles. J Colloid Interface Sci 310:121–127

    Article  CAS  Google Scholar 

  48. Li F, Sun J, Zhu H, Wen X, Lin C, Shi D (2011) Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 88:58–62

    Article  CAS  Google Scholar 

  49. Zhang WL, Piao SH, Choi HJ (2014) Magnetic carbonyl iron suspension with sepiolite additive and its magnetorheological property. IEEE Trans Magn 50: art. No. 2000204

  50. Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf A 351:46–51

    Article  CAS  Google Scholar 

  51. Kim YH, Lee JE, Cho SK, Park SY, Jeong IB, Jeong MG, Kim YD, Choi HJ, Cho SM (2012) Ultrathin polydimethylsiloxane-coated carbonyl iron particles and their magnetorheological characteristics. Colloid Polym Sci 290:1093–1098

    Article  CAS  Google Scholar 

  52. Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheological fluids: models and measurements. Int J Mod Phys B 10:3293–3303

    Article  CAS  Google Scholar 

  53. Sung JH, Cho MS, Choi HJ, Jhon MS (2004) Electrorheology of semiconducting polymers. J Ind Eng Chem 10:1217–1229

    CAS  Google Scholar 

  54. Liu YD, Park BJ, Fang FF, Choi HJ, Ahn WS (2013) Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology. Colloid Polym Sci 291:1895–1901

    Article  CAS  Google Scholar 

  55. Bombard AJF, Knobel M, Alcantara MR (2007) Phosphate coating on the surface of carbonyl iron powder and its effect in magnetorheological suspensions. Int J Mod Phys B 21:4858–4867

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministry of Trade, Industry and Energy, Korea (no. 10047791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, H.S., Kim, S.D., Piao, S.H. et al. Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol–gel method and their magnetorheology. Colloid Polym Sci 294, 647–655 (2016). https://doi.org/10.1007/s00396-015-3818-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3818-y

Keywords

Navigation