Skip to main content
Log in

Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Mesoporous nanocomposite materials of magnetic iron oxide-containing MCM-41 (IO/MCM-41) were prepared by simple thermal oxidation of Fe-containing MCM-41 initially prepared by a direct synthesis route using Fe3+ salt. The magnetic saturation of the fabricated nanocomposite materials was measured using a vibrating sample magnetometer, while surface morphology and inner framework of the composite materials were studied using a field emission scanning electron microscope and a transmission electron microscope to confirm their mesoporous nanocomposite formation. The fabricated magnetic materials were then adopted as a magnetorheological (MR) fluid, where the IO/MCM-41 magnetic nanocomposites were dispersed in a nonmagnetic medium oil in addition to as an additive for carbonyl iron-based MR fluid. Their MR properties of flow curve along with yield stress and viscoelastic properties under applied magnetic fields were investigated using a rotational rheometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  2. Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  3. Guo J, Yang WL, Deng YH, Wang CC, Fu SK (2005) Small 1:737–743

    Article  CAS  Google Scholar 

  4. Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202–207

    Article  CAS  Google Scholar 

  5. Cheng QL, Pavlinek V, Lengalova A, Li CZ, He Y, Saha P (2006) Micropor Mesopor Mat 93:263–269

    Article  CAS  Google Scholar 

  6. Popova M, Szegedi Á, Lázár K, Dimitrova A (2011) Catal Lett 141:1288–1296

    Article  CAS  Google Scholar 

  7. Emamian HR, Honarbakhsh-raouf A, Ataie A, Yourdkhani A (2009) J Alloys Compd 480:681–683

    Article  CAS  Google Scholar 

  8. Surowiec Z, Bierska-Piech B, Wiertel M, Budzynski M, Goworek J (2008) Acta Phys Polon A 114:1605–1612

    CAS  Google Scholar 

  9. Choi JS, Yoon SS, Jang SH, Ahn WS (2006) Catal Today 111:280–287

    Article  CAS  Google Scholar 

  10. Yabe K, Arata K, Toyoshima I (1979) J Catal 57:231–235

    Article  CAS  Google Scholar 

  11. Li WH, Du HJ, Chen G, Yeo SH, Guo NQ (2003) Rheol Acta 42:280–286

    CAS  Google Scholar 

  12. Bica I (2010) J Ind Eng Chem 16:359–363

    Article  CAS  Google Scholar 

  13. Cheng HB, Zuo L, Song JH, Zhang QJ, Wereley NM (2010) J Appl Phys 107:09b507

    Article  Google Scholar 

  14. Jung HJ, Lee SJ, Jang DD, Kim IH, Koo JH, Khan F (2009) IEEE Trans Magn 45:3930–3933

    Article  Google Scholar 

  15. Cheng QL, Pavlinek V, Lengalova A, Li CZ, Belza T, Saha P (2006) Micropor Mesopor Mat 94:193–199

    Article  CAS  Google Scholar 

  16. Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Colloid Polym Sci 289:799–805

    Article  CAS  Google Scholar 

  17. Liu Y, Zhang W, Choi H (2012) Colloid Polym Sci 290:855–860

    CAS  Google Scholar 

  18. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Soft Matter 7:3701–3710

    Article  Google Scholar 

  19. Park BJ, Fang FF, Choi HJ (2010) Soft Matter 6:5246–5253

    Article  CAS  Google Scholar 

  20. Kim MS, Cho MS, Choi HJ (2007) Phys Status Solidi A Appl Mater 204:4198–4201

    Article  CAS  Google Scholar 

  21. Yuan ZY, Liu SQ, Chen TH, Wang JZ, Li HX (1995) J Chem Soc Chem Commun: 973–974

  22. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  23. Marler B, Oberhagemann U, Vortmann S, Gies H (1996) Micropor Mesopor Mat 6:375–383

    Article  CAS  Google Scholar 

  24. Elias VR, Oliva MI, Urreta SE, Silvetti SP, Sapag K, Navarro AMM, Casuscelli SG, Eimer GA (2010) Appl Catal A Gen 381:92–100

    Article  CAS  Google Scholar 

  25. Li J, Lin Y (2008) J Mater Sci 43:6359–6365

    Article  CAS  Google Scholar 

  26. Pu HT, Jiang FJ, Yang ZL (2006) Mater Chem Phys 100:10–14

    Article  CAS  Google Scholar 

  27. Fang FF, Choi HJ, Seo Y (2010) ACS Appl Mater Interfaces 2:54–60

    Article  CAS  Google Scholar 

  28. Fang FF, Park BJ, Choi HJ, Ahn WS (2007) Int J Mod Phys B 21:4981–4987

    Article  CAS  Google Scholar 

  29. Schwarzl FR (1975) Rheol Acta 14:581–590

    Article  Google Scholar 

  30. De Vicente J, Gonzalez-Caballero F, Bossis G, Volkova O (2002) J Rheol 46:1295–1303

    Article  Google Scholar 

  31. Cho MS, Choi HJ, Jhon MS (2005) Polymer 46:11484–11488

    Article  CAS  Google Scholar 

  32. Lpez-Lpez MT, Gmez-Ramrez A, Duran JDG, Gonzalez-Caballero F (2008) Langmuir 24:7076–7084

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Research Foundation (#43450-1), Korea (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y.D., Park, B.J., Fang, F.F. et al. Iron oxide/MCM-41 mesoporous nanocomposites and their magnetorheology. Colloid Polym Sci 291, 1895–1901 (2013). https://doi.org/10.1007/s00396-013-2921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2921-1

Keywords

Navigation