Skip to main content
Log in

Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report herein the fabrication of poly(AAM-co-4VP) hydrogels (AAM = acrylamide, 4VP = 4-vinylpyridine) by using laser-ignited frontal polymerization (LIFP) in an easy and rapid way. The appropriate amounts of AAM, 4VP, γ-methacryloxypropyltrimethoxysilane-modified nanosilica, and couple redox initiator of ammonium persulfate/N,N,N′,N′-tetramethylethylenediamine were mixed together in the presence of dimethylsulfoxide as solvent. LIFP was initiated by heating the upper side of the mixture with the laser. Once initiated, no further energy or treatment was required for the following polymerization to occur. A variety of features for the preparation of hydrogels, such as the initiator concentration and the ratio of different monomers, were thoroughly investigated. The morphology and swelling behavior of hydrogels were investigated. For comparison, the hydrogels prepared via traditional thermal frontal polymerization were also presented and discussed. Furthermore, the hydrogels possess absorption capacity towards copper ions, which can be applied to remove heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chechilo NM, Khvilivitskii RJ, Enikolopyan NS (1972) On the phenomenon of polymerization reaction spreading. Dokl Akad Nauk SSSR 204:1180–1181

    CAS  Google Scholar 

  2. Pojman JA (1991) Traveling fronts of methacrylic acid polymerization. J Am Chem Soc 113:6284–6286

    Article  CAS  Google Scholar 

  3. Nagy IP, Sike L, Pojman JA (1995) Thermochromic composite prepared via a propagating polymerization front. J Am Chem Soc 117:3611–3612

    Article  CAS  Google Scholar 

  4. Gill N, Pojman JA, Willis J, Whitehead JB (2003) Polymerdispersed liquid-crystal materials fabricated with frontal polymerization. J Polym Sci Part A Polym Chem 41:204–212

    Article  CAS  Google Scholar 

  5. Chekanov YA, Pojman JA (2000) Preparation of functionally gradient materials via frontal polymerization. J Appl Polym Sci 78:2398–2404

    Article  CAS  Google Scholar 

  6. Fiori S, Mariani A, Ricco L, Russo S (2003) First synthesis of a polyurethane by frontal polymerization. Macromolecules 36:2674–2679

    Article  CAS  Google Scholar 

  7. Chen S, Tian Y, Chen L, Hu T (2006) Epoxy resin/polyurethane hybrid networks synthesized by frontal polymerization. Chem Mater 18:2159–2163

    Article  CAS  Google Scholar 

  8. Pojman JA, Elcan W, Khan AM, Mathias L (1997) Binary frontal polymerization: a new method to produce simultaneous interpenetrating polymer networks (SINS). J Polym Sci Part A Polym Chem 35:227–230

    Article  CAS  Google Scholar 

  9. Fang Y, Chen L, Wang CF, Chen S (2010) Facile synthesis of fluorescent quantum dot-polymer nanocomposites via frontal polymerization. J Polym Sci Part A Polym Chem 48:2170–2177

    Article  CAS  Google Scholar 

  10. Zhou J, Shao H, Tu J, Fang Y, Guo X, Wang CF, Chen L, Chen S (2010) Available plasma-ignited frontal polymerization approach toward facile fabrication of functional polymer hydrogels. Chem Mater 22:5653–5659

    Article  CAS  Google Scholar 

  11. Mota-Morales JD, Gutiérrez MC, Ferrer ML, Jiménez R, Santiago P, Sanchez IC, Terrones M, Del Monte F, Luna-Bárcenas G (2013) Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J Mater Chem A 1:3970–3976

    Article  CAS  Google Scholar 

  12. Washington RP, Steinbock O (2001) Frontal polymerization synthesis of temperature-sensitive hydrogels. J Am Chem Soc 123:7933–7934

    Article  CAS  Google Scholar 

  13. Caria G, Alzari V, Monticelli O, Nuvoli D, Kenny JM, Mariani A (2009) Poly(N, N-dimethylacrylamide) hydrogels obtained by frontal polymerization. J Polym Sci Part A Polym Chem 47:1422–1428

    Article  CAS  Google Scholar 

  14. Scognamillo S, Alzari V, Nuvoli D, Mariani A (2010) Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization. J Polym Sci Part A Polym Chem 48:2486–2490

    Article  CAS  Google Scholar 

  15. Alzari V, Mariani A, Monticelli O, Valentini L, Nuvoli D, Piccinini M, Scogamillo S, Bon SB, Illescas J (2010) Stimuli-responsive polymer hydrogels containing partially exfoliated graphite. J Polym Sci Part A Polym Chem 48:5375–5381

    Article  CAS  Google Scholar 

  16. Chen S, Hu T, Tian Y, Chen L, Pojman JA (2007) Facile synthesis of poly(hydroxyethyl acrylate) by frontal free-radical polymerization. J Polym Sci Part A Polym Chem 45:873–881

    Article  CAS  Google Scholar 

  17. Chen L, Hu T, Yu H, Chen S, Pojman JA (2007) First solvent-free synthesis of poly(N-methylolacrylamide) via frontal free-radical polymerization. J Polym Sci Part A Polym Chem 45:4322–4330

    Article  CAS  Google Scholar 

  18. Cai XJ, Chen S, Chen L (2008) Solvent-free free-radical frontal polymerization: a new approach to quickly synthesize poly(N-vinylpyrrolidone). J Polym Sci Part A Polym Chem 46:2177–2185

    Article  CAS  Google Scholar 

  19. Tu J, Chen L, Fang Y, Wang CF, Chen S (2010) Facile synthesis of amphiphilic gels by frontal free-radical polymerization. J Polym Sci Part A Polym Chem 48:823–831

    Article  CAS  Google Scholar 

  20. Tu J, Zhou J, Wang CF, Zhang Q, Chen S (2010) Facile synthesis of N-vinylimidazole-based hydrogels via frontal polymerization and investigation of their performance on adsorption of copper ions. J Polym Sci Part A Polym Chem 48:4005–4012

    Article  CAS  Google Scholar 

  21. Liu SS, Yu ZY, Fang Y, Yin SN, Wang CF, Chen L, Chen S (2011) A facile pathway for the fast synthesis of colloidal crystal-loaded hydrogels via frontal polymerization. J Polym Sci Part A Polym Chem 49:3121–3128

    Article  CAS  Google Scholar 

  22. Liu N, Shao H, Wang CF, Chen QL, Chen S (2013) High performance of interpenetrating polymer network hydrogels induced by frontal polymerization. Colloid Polym Sci 291:1871–1879

    Article  CAS  Google Scholar 

  23. Kim SH, Opdahl A, Marmo C, Somorjai GA (2002) AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23:1657–1666

    Article  CAS  Google Scholar 

  24. Pan Z, Ma JK, Yan J, Zhou M, Gao J (2012) Response of inverse-opal hydrogels to alcohols. J Mater Chem 22:2018–2025

    Article  CAS  Google Scholar 

  25. Wang K, Fu Q, Li WF, Gao Y, Zhang JY (2012) Biodegradable, pH-sensitive P(CL-Pluronic-CL-co-MAA-MEG) hydrogel for 5-aminosalicylic acid delivery. Polym Chem 3:1539–1545

    Article  CAS  Google Scholar 

  26. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  CAS  Google Scholar 

  27. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  Google Scholar 

  28. Van der Linden HJ, Herber S, Olthuis W, Bergveld P (2003) Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128:325–331

    Article  Google Scholar 

  29. Kwon GH, Choi YY, Park JY, Woo DH, Lee KB, Kim JH, Lee SH (2010) Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application. Lab Chip 10:1604–1610

    Article  CAS  Google Scholar 

  30. Yu C, Zhou J, Wang CF, Chen L, Chen S (2011) Rapid synthesis of poly(HPA-co-VeoVa 10) amphiphilic gels toward removal of toxic solvents via plasma-ignited frontal polymerization. J Polym Sci Part A Polym Chem 49:5217–5226

    Article  CAS  Google Scholar 

  31. Yu C, Wang CF, Chen S (2013) Robust self-healing host-guest gels from magnetocaloric radical polymerization. Adv Funct Mater 24:1234–1242

    Article  Google Scholar 

  32. Zhou ZF, Yu C, Wang XQ, Tang WQ, Wang CF, Chen S (2013) Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization. J Mater Chem A 1:7326–7331

    Article  CAS  Google Scholar 

  33. Patel C (1964) Continuous-wave laser action on vibrational–rotational transitions of CO2. Phys Rev 136:A1187–A1193

    Article  Google Scholar 

  34. Zeng Y, Zheng YQ (2013) Successful treatment of congenital melanocytic nevus on tragus with CO2 laser. J Dermatol Treat 25:287–289

    Article  Google Scholar 

  35. Jeffrey Kuo CF, Chiu HY, Syu SS, Huy Vu Q (2014) The CO2 laser parameter optimization design and practical verification for a touch panel conductive film. Opt Laser Eng 52:250–260

    Article  Google Scholar 

  36. Straus D, Moftakhar R, Fink Y, Patel D, Byrne RW (2013) Application of novel CO2 laser-suction device. J Neurol Surg B 74:358–363

    Article  Google Scholar 

  37. Cormont P, Combis P, Gallais L, Hecquet C, Lamaignère L, Rullier JL (2013) Removal of scratches on fused silica optics by using a CO2 laser. Opt Express 21:28272–28289

    Article  CAS  Google Scholar 

  38. Yap YC, Guijt RM, Dickson TC, King AE, Breadmore MC (2013) Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation. Anal Chem 85:10051–10056

    Article  CAS  Google Scholar 

  39. Masere J, Stewart F, Meehan T, Pojman JA (1999) Period-doubling behavior in frontal polymerization of multifunctional acrylates. Chaos 9:315–322

    Article  CAS  Google Scholar 

  40. Yu H, Fang Y, Chen L, Chen S (2009) Investigation of redox initiators for free radical frontal polymerization. Poly Int 58:851–857

    Article  CAS  Google Scholar 

  41. Pojman JA, Khan AM, Mathias L (1997) Frontal polymerization in microgravity: results from the conquest I sounding rocket flight. Microg Sci Technol 10:36–40

    CAS  Google Scholar 

  42. Cutsanu V, Luca C, Neagu V, Shofransky V, Turta C (1999) Iron(III) states in 4-vinylpyridine: divinylbenzene copolymer modified by monochloracetic and acrylic acids. React Funct Polym 40:123–128

    Article  CAS  Google Scholar 

  43. Sahiner N, Ozay O, Aktas N (2011) Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials. Chemosphere 85:832–838

    Article  CAS  Google Scholar 

  44. Sigel H, Martin RB (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82:385–426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (2012AA030313), National Natural Science Foundation of China (21076103 and 21006046), Natural Science Foundation of Jiangsu Province (BK20131408), Natural Science Foundation for Jiangsu Higher Education Institutions of China (11KJB530004), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, WQ., Mao, LH., Zhou, ZF. et al. Facile synthesis of 4-vinylpyridine-based hydrogels via laser-ignited frontal polymerization and their performance on ion removal. Colloid Polym Sci 292, 2529–2537 (2014). https://doi.org/10.1007/s00396-014-3279-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3279-8

Keywords

Navigation