Skip to main content
Log in

Layer-by-layer deposition of a polythiophene/Au nanoparticles multilayer with effective electrochemical properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Multilayers consisting of a water soluble polythiophene derivative and Au nanoparticles have been deposited onto different electrode substrates by means of layer-by-layer deposition technique. The assembly of the films has been performed by taking advantage of the electrostatic interactions between the positively charged imidazolic moiety of the polythiophene chain and the negative charges of citrate ions surrounding Au nanoparticles, as well of the affinity of S to Au. The nanoparticles result stably grafted to the organic matrix. The resulting modified electrodes have been characterised through electrochemical, spectroelectrochemical and microscopic techniques. The results evidenced that a high number of individual nanoparticles is present inside the multilayer. The presence of nanoparticles is of chief importance for most effective charge percolation through the multilayer, as suggested by the responses to electroactive probe species in solution. The electrocatalytic performances of the modified electrodes have been tested with respect to the oxidation of ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zanardi C, Terzi F, Pigani L, Seeber R (2011) In: Lechkov M, Prandzheva S (eds) Encyclopedia of polymer composites: properties, performance and applications. Nova, New York

    Google Scholar 

  2. Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley, Weinheim

    Google Scholar 

  3. Tsakova V, Ivanov S, Lange U, Stoyanova A, Lyutov V, Mirsky VM (2011) Pure Appl Chem 83:345–358

    Article  CAS  Google Scholar 

  4. Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601–619

    Article  CAS  Google Scholar 

  5. Campbell FW, Compton RG (2010) Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  6. Hernandez-Santos D, Begona Gonzalez-Garcia M, Costa Garcia A (2002) Electroanal 14:1225–1235

    Article  CAS  Google Scholar 

  7. de Dios AS, Díaz-García MA (2010) Anal Chim Acta 666:1–22

    Article  Google Scholar 

  8. Pandey P, Arya SK, Matharu Z, Singh SP, Datta M, Malhotra DB (2008) J Appl Pol Sci 110:988–994

    Article  CAS  Google Scholar 

  9. Chirea M, García-Morales V, Manzanares JA, Pereira C, Gulaboski R, Silva F (2005) J Phys Chem B 109:21808–21817

    Article  CAS  Google Scholar 

  10. McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  11. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Chem Rev 110:4724–4771

    Article  CAS  Google Scholar 

  12. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Adv Mater 22:1805–1825

    Article  CAS  Google Scholar 

  13. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  14. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  15. Terzi F, Zanardi C, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T, Kankare J (2009) J Phys Chem C 113:4868–4874

    Article  CAS  Google Scholar 

  16. Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T (2010) Sens Act B 144:92–98

    Article  Google Scholar 

  17. Zotti G, Vercelli B, Berlin A (2008) Acc Chem Res 41:1098–1109

    Article  CAS  Google Scholar 

  18. Antolini E, Gonzalez ER (2009) Appl Cat A 365:1–19

    Article  CAS  Google Scholar 

  19. Tarushee Ahujab R, Kumarb D (2009) Sens Act B 136:275–286

    Article  Google Scholar 

  20. Decher G (1997) Science 277:1232–1237

    Article  CAS  Google Scholar 

  21. Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley, Weinheim

    Google Scholar 

  22. Dubas ST, Schlenoff JB (1999) Macromolecules 32:8153–8160

    Article  CAS  Google Scholar 

  23. Viinikanoja A, Areva S, Kocharova N, Ääritalo T, Vuorinen M, Savunen A, Kankare J, Lukkari J (2006) Langmuir 22:6078–6086

    Article  CAS  Google Scholar 

  24. Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  25. Jiang C, Markutsya S, Tsukruk VV (2004) Langmuir 20:882–890

    Article  CAS  Google Scholar 

  26. Moores A, Goettmann F (2006) New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  27. Ung T, Liz-Marzán LM, Mulvaney O (2001) J Phys Chem B 105:3441–3452

    Article  CAS  Google Scholar 

  28. Underwood S, Mulvaney P (1994) Langmuir 10:3427–3430

    Article  CAS  Google Scholar 

  29. Pern FJ, Frank AJ (1990) J Electrochem Soc 137:2769–2777

    Article  CAS  Google Scholar 

  30. Bredas JL, Street GB (1985) Acc Chem Res 18:309–315

    Article  CAS  Google Scholar 

  31. Patil AO, Heeger AJ, Wudl F (1988) Chem Rev 88:183–200

    Article  CAS  Google Scholar 

  32. Murthy ASN, Sharma J (1998) Anal Chim Acta 363:215–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Seeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanfrognini, B., Zanardi, C., Terzi, F. et al. Layer-by-layer deposition of a polythiophene/Au nanoparticles multilayer with effective electrochemical properties. J Solid State Electrochem 15, 2395–2400 (2011). https://doi.org/10.1007/s10008-011-1479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1479-4

Keywords

Navigation