Skip to main content

Advertisement

Log in

Constraints in post-synthesis ligand exchange for hybrid organic (MEH-PPV)–inorganic (CdSe) nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

For an optimum charge/energy transfer performance of hybrid organic–inorganic colloidal nanocrystals for applications such as photonic devices and solar cells, the determining factors are the distance between the nanocrystal and polymer which greatly depends upon nanocrystal size/nanocrystal ligands. Short chain ligands are preferred to ensure a close contact between the donor and acceptor as a result of the tunnelling probability of the charges and the insulating nature of long alkyl chain molecules. Short distances increase the probability for tunnelling to occur as compared to long distances induced by long alkyl chains of bulky ligands which inhibit tunnelling altogether. The ligands on the as-synthesized nanocrystals can be exchanged for various other ligands to achieve desirable charge/energy transfer properties depending on the bond strength of the ligand on the nanocrystal compared to the replacement ligand. In this work, the constraints involved in post-synthesis ligand exchange process have been evaluated, and these factors have been tuned via wet chemistry to tailor the hybrid material properties via appropriate selection of the nanocrystal capping ligands. It has been found that both oleic acid and oleylamine (OLA)-capped cadmium selenide (CdSe) quantum dots (QDs) as compared with trioctylphosphine oxide (TOPO)-passivated CdSe QDs are of high quality, and they provide better steric stability against coagulation, homogeneity, and photostability to their respective polymer:CdSe nanocomposites. CdSe QDs particularly with OLA capping have relatively smaller surface energies, and thus, lesser quenching capabilities show dominance of photoinduced Forster energy transfer between donors (polymer) and acceptors (CdSe nanocrystals) as compared to charge transfer mechanism as observed in polymer:CdSe (TOPO) composites. It is conjectured that size quantization effects, stereochemical compatibility of ligands (TOPO, oleic acid, and oleyl amine), and polymer MEH-PPV stability greatly influence the photophysics and photochemistry of hybrid polymer–semiconductor nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huynh WU, Peng X, Alivisatos AP (1999) Adv Mater 11:923–927

    Article  CAS  Google Scholar 

  2. Greenham NC, Peng XG, Alivisatos AP (1996) Phys Rev B 54:17628–17637

    Article  CAS  Google Scholar 

  3. Seo J, Kim WJ, Kim SJ, Lee KS, Cartwright AN, Prasad PN (2009) Appl Phys Lett 94:133302–133304

    Article  Google Scholar 

  4. Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) Nanoscale Res Lett 8:106–113

    Article  Google Scholar 

  5. Binetti E, Ingrosso C, Striccoli M, Cosma P, Agostiano A, Pataky K, Brugger J, Curri ML (2012) Nanotechnology 23:075701–075709

    Article  CAS  Google Scholar 

  6. Deng S, Lei J, Yao X, Huang Y, Lin D, Ju H (2013) J Mater ChemC 1:299–306

    CAS  Google Scholar 

  7. Patidar D, Saxena NS (2013) Adv Nanoparticles 2:11–15

    Article  Google Scholar 

  8. Yuan Y, Krüger M (2012) Polymers 4:1–19

    Article  CAS  Google Scholar 

  9. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  10. Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322–11325

    Article  CAS  Google Scholar 

  11. Wang C, Jiang Y, Li G, Zhang Z, Shi J, Li N (2008) J Cryst Growth 310:2890–2894

    Article  CAS  Google Scholar 

  12. Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) J Am Chem Soc 126:6550–6551

    Article  CAS  Google Scholar 

  13. Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) J Nanosci Nanotechnol 7:1953–1959

    Article  CAS  Google Scholar 

  14. Kumari K, Chand S, Kumar P, Sharma SN, Vankar VD, Kumar V (2008) Appl Phys Lett 92:263504–263506

    Article  Google Scholar 

  15. Sharma SN, Pillai ZS, Kamat PV (2003) J Phys Chem B 107:10088–10093

    Article  CAS  Google Scholar 

  16. Mehta A, Sharma N. Shailesh, Singh VN, Srivastva AK, Chand S (October 2012) Proc. SPIE. 8549: 16th International Workshop on Physics of Semiconductor Devices 854933–6

  17. Sharma H, Sharma SN, Singh S, Kishore R, Singh G, Shivaprasad SM (2007) Appl Surf Sci 253:5325–5333

    Article  CAS  Google Scholar 

  18. Mattaoussi H, Cumming AW, Murray CB, Bawendi MG, Ober R (1998) Phys Rev B 58:7850–7863

    Article  Google Scholar 

  19. Lee CW, Chou CH, Huang JH, Hsu CS, Nguyen TP (2008) Mater Sci Eng B 147:307–311

    Article  CAS  Google Scholar 

  20. Pankove JI (1975) Optical processes in semiconductors, 1st edn. Dover, New York, Appendix

    Google Scholar 

  21. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  22. Efros AL, Efros AL (1982) Sov Phys Semicond 16:772–775

    Google Scholar 

  23. Zhang JB, Lin Y, Xiao XR, Wang RZ (2005) Thin Solid Films 479:188–192

    Article  CAS  Google Scholar 

  24. Rastogi AC, Sharma SN, Kohli S (2000) Semicond Sci Technol 15:1011–1021

    Article  CAS  Google Scholar 

  25. Adair JH, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Mat Sci Eng R 23:139–242

    Article  Google Scholar 

  26. Albe V, Jouanin C, Bertho D (1998) Phys Rev B 58:4713–4720

    Article  CAS  Google Scholar 

  27. Becerra LR, Murray CB, Griffin RG, Bawendi MG (1994) J Chem Phys 100:3297–3300

    Article  CAS  Google Scholar 

  28. Kalsi PS (2002) Spectroscopy of organic compounds. New Age, New Delhi, p 60

    Google Scholar 

  29. Kim BS, Avila L, Brus LE, Herman IP (2000) Appl Phys Lett 76:3715–3717

    Article  CAS  Google Scholar 

  30. Shukla N, Liu C, Jones PM, Weller D (2003) J Magn Magn Mater 266:178–184

    Article  CAS  Google Scholar 

  31. Sharma SN, Vats T, Dhenadhayalan N, Ramamurthy P, Narula AK (2012) Sol Energy Mater Sol Cells 100:6–15

    Article  CAS  Google Scholar 

  32. Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) Colloid Polym Sci 285:1213–1227

    Article  CAS  Google Scholar 

  33. Brinkmann M, Aldakov D, Chandezon F (2007) Adv Mater 19:3819–3823

    Article  CAS  Google Scholar 

  34. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer-Plenum, New York

    Book  Google Scholar 

  35. Sharma SN (2006) Colloid Polym Sci 284:853–861

    Article  CAS  Google Scholar 

  36. Sharma SN, Sharma H, Singh G, Shivaprasad SM (2008) Mater Chem Phys 110:471–480

    Article  CAS  Google Scholar 

  37. Kharkwal A, Sharma SN, Chand S, Singh AK (2012) Colloid Polym Sci 290:49–61

    Article  CAS  Google Scholar 

  38. Mulazzi E, Ripamonti A, Wery J, Dulieu B, Lefrant S (1999) Phys Rev B 60:16519–16525

    Article  CAS  Google Scholar 

  39. Yang SH, Nguyen TP, Le Rendu P, Hsu CS (2005) Thin Solid Films 471:230–235

    Article  CAS  Google Scholar 

  40. Sakamoto A, Furukawa Y, Tasumi M (1992) J Phys Chem 96:1490–1494

    Article  CAS  Google Scholar 

  41. Zeng QG, Ding ZJ (2004) J Phys Condens Matter 16:5171–5178

    Article  CAS  Google Scholar 

  42. Bruevich VV, Makhmutov TSH, Elizarov SG, Nechvolodova EM, Paraschuk DY (2007) J Chem Phys 127:104905–104913

    Article  CAS  Google Scholar 

  43. Osotov MO, Bruevich VV, Paraschuk DY (2009) J Chem Phys 131:094906–094910

    Article  CAS  Google Scholar 

  44. Bullen CR, Mulvaney P (2004) Nano Lett 4:2303–2307

    Article  CAS  Google Scholar 

  45. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115–2117

    Article  CAS  Google Scholar 

  46. Shoustikov AA, You Y, Thomson ME (1998) IEEE J Sel Top Quantum Electron 4:3–13

    Article  CAS  Google Scholar 

  47. Anni M, Manna L, Cingolani R, Valerini D, Creti A, Lomascolo M (2004) Appl Phys Lett 85:4169–4171

    Article  CAS  Google Scholar 

  48. Bol AA, Meijerink A (2001) J Phys Chem B 105:10203–10209

    Article  CAS  Google Scholar 

  49. LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  50. Matijevic E (1993) Chem Mater 5:412–426

    Article  CAS  Google Scholar 

  51. Van Embden J, Mulvaney P (2005) Langmuir 21:10226–10233

    Article  Google Scholar 

  52. Li G, Shrotriya V, Yao Y, Yang Y (2005) J Appl Phys 98:043704–043708

    Article  Google Scholar 

  53. Kondon M, Kim J, Udawatte N, Lee D (2008) J Phys Chem C 112:6695–6699

    Article  CAS  Google Scholar 

  54. Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) J Phys Chem C 111:14223–14229

    Article  CAS  Google Scholar 

  55. Salgueirino-Maceira V, Liz-Marzn LM, Farle M (2004) Langmuir 20:6946–6950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, National Physical Laboratory, New Delhi (India) for his kind support. We are thankful to CSIR-India for TAP-SUN program. AM and PC are thankful to MNRE, Govt. of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, A., Sharma, S.N., Chawla, P. et al. Constraints in post-synthesis ligand exchange for hybrid organic (MEH-PPV)–inorganic (CdSe) nanocomposites. Colloid Polym Sci 292, 301–315 (2014). https://doi.org/10.1007/s00396-013-3073-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3073-z

Keywords

Navigation