Skip to main content
Log in

Studies of optical and structural properties of CdSe/polymer nanocomposites: evidence of charge transfer and photostability

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the role of conducting [poly (p-phenylinevinylene) (PPV)] and nonconducting (polystyrene) polymers on the properties of their respective composites with CdSe quantum dots of varied sizes has been investigated. The emission and structural properties of polymer–CdSe composites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. Smaller CdSe quantum dots (size, ∼5 nm) ensures efficient charge transfer process across polymer–CdSe interface as evident by almost complete quenching of photoluminescence (PL) emission as compared to larger CdSe quantum dots (size, ∼7 nm). Presence of residual trioctylphosphine (TOP)/ tri-n-octylphosphine-oxide (TOPO) species and agglomeration of particles act as a hindrance for quenching of emission and hence charge transfer for larger CdSe nanocrystallites. Emission studies indicated an increased conjugation length for PPV polymers in different solvents (toluene, pyridine) and in solid state. Nonconducting polymer polystyrene shows charge transfer across polymer–CdSe interface as well. However, polystyrene polymer has a shorter chain length, which ensures maximum coverage on the surface of CdSe nanocrystallites and provides better photostability to CdSe QDs within the polymer matrix as compared to that for PPV–CdSe nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  2. Yen BKH, Scott NE, Jensen KF, Bawendi MG (2003) Adv Mater 15:1858

    Article  CAS  Google Scholar 

  3. Qu L, Peng X (2002) J Am Chem Soc 124:2049

    Article  CAS  Google Scholar 

  4. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631

    Article  CAS  Google Scholar 

  5. Tessler N, Medvedev V, Kazes M, Kan S, Banin U (2002) Science 295:1506

    Article  Google Scholar 

  6. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  7. Zhong X, Han M, Dong Z, White TJ, Knoll W (2003) J Am Chem Soc 125:8589

    Article  CAS  Google Scholar 

  8. Qu L, Yu WW, Peng X (2004) Nano Lett 4:465

    Article  CAS  Google Scholar 

  9. Hambrock J, Birkner A, Fischer RA (2001) J Mater Chem 11:3197

    Article  CAS  Google Scholar 

  10. Battaglia D, Peng X (2002) Nano Lett 2:1027

    Article  CAS  Google Scholar 

  11. Pyun J, Matyjaszewski K (2001) Chem Mater 13:3436

    Article  CAS  Google Scholar 

  12. Huynh WU, Peng X, Alivisatos AP (1999) Adv Mater 11:923

    Article  CAS  Google Scholar 

  13. Chen W, Joly AG, Malm JO, Bovin JO, Wang S (2003) J Phys Chem B 107:6544

    Article  CAS  Google Scholar 

  14. Winiarz JG, Zhang LM, Lal M, Friend CS, Prasad PN (1999) J Am Chem Soc 121:5287

    Article  CAS  Google Scholar 

  15. Dabbaousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Appl Phys Lett 66:1316

    Article  Google Scholar 

  16. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavamich A, Alivisatos AP (2000) Nature 404:59

    Article  CAS  Google Scholar 

  17. Alivisatos AP (1996) J Phys Chem 100:13226

    Article  CAS  Google Scholar 

  18. Ginger DS, Greenham NC (1999) Phys Rev B 16:10622

    Article  Google Scholar 

  19. Caseri W (2000) Macromol Rapid Commun 21:705

    Article  CAS  Google Scholar 

  20. Moffitt M, Vali H, Eisenberg A (1998) Chem Mater 10:1021

    Article  CAS  Google Scholar 

  21. Antonietti M, Goltner C (1997) Angew Chem Int Ed Engl 36:910

    Article  Google Scholar 

  22. Li X, Freyer JR, Cole-Hamilton DJ (1994) J Chem Soc Chem Commun 14:1715

    Article  Google Scholar 

  23. Sankaran V, Yue J, Cohen RE, Schrock RR, Silbey R (1993) J Chem Mater 5:1133

    Article  CAS  Google Scholar 

  24. Wang Y, Mahler W (1987) Opt Commun 61:233

    Article  CAS  Google Scholar 

  25. Hilinski EF, Lucas PA, Wang Y (1988) J Chem Phys 89:3435

    Article  CAS  Google Scholar 

  26. Yuan Y, Fendler JH, Cabasso I (1992) Chem Mater 4:312

    Article  CAS  Google Scholar 

  27. Trindade T, Neves MC, Barros AMV (2000) Scripta Mater 43:567

    Article  CAS  Google Scholar 

  28. Yang Y, Huang J, Liu S, Shen J (1997) J Mater Chem 7:131

    Article  Google Scholar 

  29. Pavel FM, Mackay RA (2000) Langmuir 16:8568

    Article  CAS  Google Scholar 

  30. Wang S, Yang S, Yang C, Li Z, Wang J, Ge W (2000) J Phys Chem B 104:11853

    Article  CAS  Google Scholar 

  31. Bowen Katari JE, Colvin VL, Alivisatos AP (1994) J Phys Chem 98:4109

    Article  Google Scholar 

  32. Sharma SN, Sharma H, Singh G, Shivaprasad SM (2006) Nucl Instrum Methods Phys Res B 244:86

    Article  CAS  Google Scholar 

  33. Sharma H, Sharma SN, Singh G, Shivaprasad SM (2006) Physica E 31:180

    Article  CAS  Google Scholar 

  34. Greenham NC, Peng X, Alivisatos AP (1996) Phys Rev B 54:17628

    Article  CAS  Google Scholar 

  35. Zheng M, Bai F, Zhu DJ (1998) Photochem Photobiol A 116:143

    Article  CAS  Google Scholar 

  36. Sharma SN (2006) Colloid Polym Sci 284:853

    Article  CAS  Google Scholar 

  37. Diaz-Garcia MA, Hide F, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1997) Synth Met 84:455

    Article  CAS  Google Scholar 

  38. Bawendi MG, Steigerwald ML, Brus LE (1990) Annu Rev Phys Chem 41:477

    CAS  Google Scholar 

  39. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York

    Google Scholar 

  40. Samworth CM, Esposti MD, Lenaz G (1988) Eur J Biochem 171:81

    Article  CAS  Google Scholar 

  41. Sharma SN, Sharma H, Karar N, Chandra H, Singh G, Shivaprasad SM (2007) Mater Chem Phys (in press)

  42. Wyatt WA, Bright FV, Hieftje GM (1987) Anal Chem 59:2272

    Article  CAS  Google Scholar 

  43. Birks JB (ed) (1975) Organic molecular photophysics. Wiley, New York, p 409

    Google Scholar 

  44. Zheng M, Bai F, Fengying L, Li Y, Zhu D (1998) J Appl Polym Sci 70:599

    Article  CAS  Google Scholar 

  45. Shiang JJ, Kadavanich AV, Grubbs RK, Alivisatos AP (1994) J Phys Chem 99:17417

    Article  Google Scholar 

  46. Deacon GB, Green JHS (1968) Spectrochim Acta 24a:845

    Google Scholar 

  47. Becerra LR, Murray CB, Griffin RG, Bawendi MG (1994) J Chem Phys 100:3297

    Article  CAS  Google Scholar 

  48. Kalsi PS (2002) Spectroscopy of organic compounds. New Age International Pvt., New Delhi, p 60

    Google Scholar 

  49. Kim BS, Avila L, Brus LE, Herman IP (2000) Appl Phys Lett 76:3715

    Article  CAS  Google Scholar 

  50. Gettinger CL, Heeger AJ, Drake JM, Pine DJ (1994) J Chem Phys 101:1673

    Article  CAS  Google Scholar 

  51. Martens JHF (1993) Synth Met 55–57:434

    Article  Google Scholar 

  52. Harrison NT, Baigent DR, Samuel IDW, Friend RH, Grimsdale AC, Moratti SC, Holmes AB (1996) Phys Rev B 53:15815

    Article  CAS  Google Scholar 

  53. Skaff H, Sill K, Emrick T (2004) J Am Chem Soc 126:11322

    Article  CAS  Google Scholar 

  54. Ginger DS, Greenham NC (1999) Synth Met 101:425

    Article  CAS  Google Scholar 

  55. Liu P, Su Z (2005) Mater Chem Phys 94:412

    Article  CAS  Google Scholar 

  56. Rong Y, Hong-Zheng Chen, Wu G, Wang M (2005) Mater Chem Phys 91:370

    Article  CAS  Google Scholar 

  57. Sharma H, Sharma SN, Singh G, Shivaprasad SM (2005) Proceedings of XIII international workshop on physics of semiconductor devices, vol. I. IWPSD-2005 workshop, NPL India, 13–17 Dec 2005, p 389

  58. Cordero SR, Carson PJ, Estabrook RA, Strouse GF, Buratto SK (2000) J Phys Chem B 104:12137

    Article  CAS  Google Scholar 

  59. Bol AA, Meijerink A (2001) J Phys Chem B 105:10203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Director NPL for the encouragement to perform this work. The financial assistance from the Department of Science and Technology, New Delhi is gratefully acknowledged. Dr. SK Dhawan (Polymer Group, NPL) is greatly acknowledged for providing PPV and for his interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, H., Sharma, S.N., Singh, G. et al. Studies of optical and structural properties of CdSe/polymer nanocomposites: evidence of charge transfer and photostability. Colloid Polym Sci 285, 1213–1227 (2007). https://doi.org/10.1007/s00396-007-1674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1674-0

Keywords

Navigation