Skip to main content
Log in

Photoinduced shape fixity and thermal-induced shape recovery properties based on polyvinyl alcohol bearing coumarin

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, polyvinyl alcohol (PVA) bearing coumarin with different degrees of substitution (DS) are synthesized by esterifying hydroxyl of PVA with 7-carboxylmethoxycoumarin. The grafted polymer has photosensitive property and presents photocrosslinking due to the photodimerization between pendant coumarin groups, which affords PVA–coumarin sample photoinduced shape fixity properties. PVA–coumarin can be cross-linked after being illuminated under UV light of 360 nm; this provides the possibility that the sample has shape memory properties only if the cross-linking extent is suitable. The shape memory properties were induced by thermal as most shape memory polymer do. In fact, the shape fixity and recovery has strong relationship with DS, irradiation time, and thickness of sample. The effect of DS on the grafted polymer structure and properties has been studied by differential scanning calorimetry, thermogravimetric analysis, and UV spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Behl M, Lendlein A (2007) Shape memory polymers. Mater Today 10:20–28

    Article  CAS  Google Scholar 

  2. Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58–67

    Article  CAS  Google Scholar 

  3. Behl M, Zotzmann J, Lendlein A (2010) Shape-memory polymers and shape-changing polymers. Adv Polym Sci 226:1–40

    Article  CAS  Google Scholar 

  4. Wang CC, Huang WM, Ding Z et al (2012) Cooling-/water-responsive shape memory hybrids. Compos Sci Tech 72:178–1182

    Google Scholar 

  5. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  6. Huang WM, Ding Z, Wang CC et al (2010) Shape memory materials. Mater Today 13:54–61

    Article  CAS  Google Scholar 

  7. Choi N, Lendlein A (2007) Degradable shape-memory polymer networks from oligo [(l-lactide)-ranglycolide] dimethacrylates. Soft Matter 3:901–909

    Article  CAS  Google Scholar 

  8. Huang WM, Zhao Y, Wang CC et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals, and optimization. J Polym Res 19:9

    Article  CAS  Google Scholar 

  9. Vaia R (2005) Nanocomposites: remote-controlled actuators. Nat Mater 4:429–430

    Article  CAS  Google Scholar 

  10. Baer GM, IV W S, Wilson TS et al (2007) Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng 6:43–51

    Google Scholar 

  11. Buckley PR, McKinley GH, Wilson TS et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53:2075–2083

    Article  Google Scholar 

  12. Du H, Yu Y, Jiang G et al (2011) Microwave-induced shape memory effect of chemically cross-linked moist poly(vinyl alcohol) networks. Macromol Chem Phys 212:1460–1468

    Article  CAS  Google Scholar 

  13. Liu G, Ding X, Cao Y et al (2004) Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37:2228–2232

    Article  CAS  Google Scholar 

  14. Hirai T, Maruyama H, Suzuki T et al (1992) Effect of chemical cross-linking under elongation on shape restoring of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 46:1449–1451

    Article  CAS  Google Scholar 

  15. Hirai T, Maruyama H, Suzuki T et al (1992) Shape memorizing properties of a hydrogel of poly (vinyl alcohol). J Appl Polym Sci 45:1849–1855

    Article  CAS  Google Scholar 

  16. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  17. Jiang H, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475

    Article  CAS  Google Scholar 

  18. Wondraczek H, Pfeifer A, Heinze T (2010) Synthetic photo cross-linkable polysaccharide sulfates. Eur Polymer J 46:1688–1695

    Article  CAS  Google Scholar 

  19. He J, Zhao Y (2011) Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dyes Pigments 89:278–283

    Article  CAS  Google Scholar 

  20. Mal NK, Fujiwara M, Tanaka Y (2003) Photo controlled reversible release of guest molecules from coumarin modified mesoporous silica. Nature 421:351–353

    Article  Google Scholar 

  21. Mal NK, Fujiwara M, Tanaka Y et al (2003) Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41. J Mater Chem 15:3385–3394

    Article  CAS  Google Scholar 

  22. Lin HM, Wang WK, Hsiung PA, Shyu SG (2010) Light-sensitive intelligent drug delivery systems of coumarin-modified mesoporous bioactive glass. Acta Biomater 6:3256–3263

    Article  CAS  Google Scholar 

  23. Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers.1. Synthesis and photocuring characteristics. Macromolecules 33:795–800

    Article  CAS  Google Scholar 

  24. Jackson PO, Bergmann G, Hogg JHC et al (2002) Grazing incidence X-ray reflectivity of coumarin side-chain polymers used for liquid crystal photoalignment layers. Synth Met 127:95–98

    Article  CAS  Google Scholar 

  25. He J, Zhao Y, Zhao Y (2009) Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5:308–310

    Article  CAS  Google Scholar 

  26. Nagata M, Yamamoto Y (2010) Photocurable shape-memory copolymers of ε-caprolactone and l-lactide. Macromol Chem Phys 211:1826–1835

    Article  CAS  Google Scholar 

  27. Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape memory properties. J Polymer Sci, Part A: Polymer Chem 47:2422–2433

    Article  CAS  Google Scholar 

  28. Du H, Zhang J (2010) Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules. Colloid Polym Sci 288:15–24

    Article  CAS  Google Scholar 

  29. Du H, Zhang J (2010) Solvent-induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6:3370–3376

    Article  CAS  Google Scholar 

  30. Du H, Zhang J (2012) The synthesis of poly(vinyl cinnamates) with light-induced shape fixity properties. Sensors Actuators A 179:114–120

    Article  CAS  Google Scholar 

  31. Lee MS, Kim JC (2012) Photodependent release from poly(vinyl alcohol)/epoxypropoxy coumarin hydrogels. J Appl Polym Sci 124:4339–4345

    Article  CAS  Google Scholar 

  32. Trenor SR, Long TE, Love BJ (2004) Photoreversible chain extension of poly(ethylene glycol). Macromol Chem Phys 205:715–723

    Article  CAS  Google Scholar 

  33. Nagata M, Yamamoto Y (2008) Photoreversible poly(ethylene glycol)s with pendent coumarin group and their hydrogels. React Funct Polym 68:915–921

    Article  CAS  Google Scholar 

  34. Pan J, Feng SS (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide) vitamin E TPGS nanoparticles. Biomaterials 29:2663–2672

    Article  CAS  Google Scholar 

  35. Han XJ, Dong ZQ (2012) pH-induced shape memory polymers. Macromol Rapid Commun 33:1055–1060

    Article  CAS  Google Scholar 

  36. Moritani T, Kuruma I, Shibatani K et al (1972) Tacticity of poly(vinyl alcohol) studied by nuclear magnetic resonance of hydroxyl protons. Macromolecules 5:577–580

    Article  CAS  Google Scholar 

  37. Wu TK, Ovenalllb DW (1973) Proton and carbon-13 nuclear magnetic resonance studies of poly(vinyl alcohol). Macromolecules 6:582–584

    Article  CAS  Google Scholar 

  38. Carlotti SJ, Beaune OG, Schue F (2001) Characterization and mechanical properties of water-soluble poly(vinyl alcohol) grafted with lactic acid and glycolic acid. J Appl Polym Sci 80:142–147

    Article  CAS  Google Scholar 

  39. Ding J, Chen SC, Wang XL et al (2009) Synthesis and properties of thermoplastic poly(vinyl alcohol)-graft-lactic acid copolymers. Ind Eng Chem Res 48:788–793

    Article  CAS  Google Scholar 

  40. Becquart F, Taha M, Zerroukhi A, Chalamet Y, Kaczun J, Llauro M (2007) ε-Caprolactone grafting on a poly(vinyl alcohol-co-vinyl acetate) in the melt without added initiator. J Appl Polym Sci 105:2525–2531

    Article  CAS  Google Scholar 

  41. Fu Q, Cheng LL, Zhang Y, Shi WF (2008) Preparation and reversible photo-cross-linking/photo-cleavage behavior of 4-methylcoumarin functionalized hyperbranched polyester. Polymer 49:4981–4988

    Article  CAS  Google Scholar 

  42. Wang B, Guan X, Hu Y, Su Z (2007) Preparation and fluorescent properties of poly(vinyl alcohol) bearing coumarin. Polym Adv Technol 18:529–534

    Article  CAS  Google Scholar 

  43. Nakyama Y, Matusuda T (2005) Photocycloaddition-induced preparation of nanostructured, cyclic polymers using biscinnamated or biscoumarinated oligo (ethylene glycol)s. J Polymer Sci, Part A: Polymer Chem 43:3324–3336

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the project supported by the Major Project of Chinese Ministry of Education (No. 313036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Dang, Y., Deng, J. et al. Photoinduced shape fixity and thermal-induced shape recovery properties based on polyvinyl alcohol bearing coumarin. Colloid Polym Sci 292, 85–95 (2014). https://doi.org/10.1007/s00396-013-3057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3057-z

Keywords

Navigation