Skip to main content
Log in

Conjugated microporous polymers for near-infrared photothermal control of shape change

共轭多孔聚合物应用于近红外光热转换材料

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Herein, a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported. Through direct polymerization of commercial aromatic monomers in the presence of anhydrous aluminium chloride and dichloromethane, four kinds of conjugated microporous polymers (CMPs) were obtained. Detailed structural analysis confirmed that the resultant CMPs possessed abundant micropores with an extended π-conjugated skeleton. Under near-infrared (NIR) light irradiation (808 nm, 1.0 W cm−2), all the CMPs showed fast heating-up behavior with their maximum temperatures higher than 150°C. Moreover, the efficiency of photothermal conversion (η) of the CMPs was found to increase linearly with the increase in the number of conjugated benzene rings within the monomer. Poly-TPE from tetraphenylethylene (TPE) and Poly-TP from o-terphenyl (TP) showed high η values of over 47%. Poly-TPE was additionally used as a photothermal filler to remotely and spatially control the shape recovery of thermal-sensitive shape memory polymers (SMPs), while its introduction (1 wt%) had little influence on the thermal and mechanical properties of the polymer matrixes. Owing to their excellent NIR photothermal performance as well as a one-step synthetic preparation, these CMPs may be promising photothermal materials for practical applications.

摘要

近红外光热转换材料在光热治疗、 光驱动智能器件等医学和能源领域受到广泛重视. 本文以商业化芳香小分子为单体, 通过一步简单的交联聚合方法制得了四种共轭多孔聚合物, 并首次系统研究了它们的光热转换性能. 结果表明, 它们均具有灵敏的近红外光热响应性, 且材料的光热转换效率与单体结构中共轭苯环数有很大关系, 其中两种聚合物的光热转换效率可高达47%以上. 同时, 该类共轭多孔聚合物可作为光热转换填料, 将其少量填充于热敏型形状记忆材料基体中, 可实现远程、 快速、 定点调控材料形状的回复, 且其对基材的热性质和力学性能影响很小. 研究表明, 由于其合成简单、 原料易得、 光热转换效率高, 该共轭多孔聚合物是一类很有应用前景的光热转换材料.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das S, Heasman P, Ben T, et al. Porous organic materials: Strategic design and structure-function correlation. Chem Rev, 2017, 117: 1515–1563

    Article  CAS  Google Scholar 

  2. Liu F, Huang K, Wu Q, et al. Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2. Adv Mater, 2017, 29: 1700445

    Article  CAS  Google Scholar 

  3. Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: A new class of highly selective CO2 capturing materials. Adv Mater, 2012, 24: 5703–5707

    Article  CAS  Google Scholar 

  4. Ma H, Wang Z, Zhao YH, et al. Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion. Sci China Mater, 2020, 63: 429–436

    Article  CAS  Google Scholar 

  5. Dawson R, Cooper AI, Adams DJ. Nanoporous organic polymer networks. Prog Polym Sci, 2011, 37: 530–563

    Article  CAS  Google Scholar 

  6. Xu Y, Jin S, Xu H, et al. Conjugated microporous polymers: Design, synthesis and application. Chem Soc Rev, 2013, 42: 8012–8031

    Article  CAS  Google Scholar 

  7. Li L, Cai K, Wang P, et al. Construction of sole benzene ring porous aromatic frameworks and their high adsorption properties. ACS Appl Mater Interfaces, 2015, 7: 201–208

    Article  CAS  Google Scholar 

  8. Xu Y, Cui D, Zhang S, et al. Facile synthesis of conjugated microporous polymer-based porphyrin units for adsorption of CO2 and organic vapors. Polym Chem, 2019, 10: 819–822

    Article  Google Scholar 

  9. Jiang JX, Su F, Trewin A, et al. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc, 2008, 130: 7710–7720

    Article  CAS  Google Scholar 

  10. Schmidt J, Werner M, Thomas A. Conjugated microporous polymer networks via Yamamoto polymerization. Macromolecules, 2009, 42: 4426–4429

    Article  CAS  Google Scholar 

  11. Xu Y, Chen L, Guo Z, et al. Light-emitting conjugated polymers with microporous network architecture: Interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J Am Chem Soc, 2011, 133: 17622–17625

    Article  CAS  Google Scholar 

  12. Kou Y, Xu Y, Guo Z, et al. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew Chem Int Ed, 2011, 50: 8753–8757

    Article  CAS  Google Scholar 

  13. Tan J, Wan J, Guo J, et al. Self-sacrificial template-induced modulation of conjugated microporous polymer microcapsules and shape-dependent enhanced photothermal efficiency for ablation of cancer cells. Chem Commun, 2015, 51: 17394–17397

    Article  CAS  Google Scholar 

  14. Wang X, Liu Q, Wu S, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv Mater, 2019, 31: 1807716

    Article  CAS  Google Scholar 

  15. Espín J, Garzón-Tovar L, Carné-Sánchez A, et al. Photothermal activation of metal-organic frameworks using a UV-Vis light source. ACS Appl Mater Interfaces, 2018, 10: 9555–9562

    Article  CAS  Google Scholar 

  16. Xu W, Hu X, Zhuang S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv Energy Mater, 2018, 8: 1702884

    Article  CAS  Google Scholar 

  17. Kim B, Shin H, Park T, et al. NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermoelectric converters. Adv Mater, 2013, 25: 5483–5489

    Article  CAS  Google Scholar 

  18. Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer. Chem Rev, 2014, 114: 10869–10939

    Article  CAS  Google Scholar 

  19. Yang Z, Han X, Lee HK, et al. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10: 16005–16012

    Article  CAS  Google Scholar 

  20. Ou C, Zhang Y, Pan D, et al. Zinc porphyrin-polydopamine coreshell nanostructures for enhanced photodynamic/photothermal cancer therapy. Mater Chem Front, 2019, 3: 1786–1792

    Article  CAS  Google Scholar 

  21. Han B, Zhang YL, Chen QD, et al. Carbon-based photothermal actuators. Adv Funct Mater, 2018, 28: 1802235

    Article  CAS  Google Scholar 

  22. Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc, 2011, 133: 6825–6831

    Article  CAS  Google Scholar 

  23. Huang S, Ma P, Wei Y, et al. Controllable synthesis of hollow porous silica nanotubes/CuS nanoplatform for targeted chemophotothermal therapy. Sci China Mater, 2020, 63: 864–875

    Article  CAS  Google Scholar 

  24. Guo LX, Liu MH, Sayed SM, et al. A calamitic mesogenic nearinfrared absorbing croconaine dye/liquid crystalline elastomer composite. Chem Sci, 2016, 7: 4400–4406

    Article  CAS  Google Scholar 

  25. Li Z, Yang Y, Wang Z, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. J Mater Chem A, 2017, 5: 6740–6746

    Article  CAS  Google Scholar 

  26. Ou H, Li J, Chen C, et al. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci China Mater, 2019, 62: 1740–1758

    Article  CAS  Google Scholar 

  27. Liu Y, Ai K, Liu J, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater, 2013, 25: 1353–1359

    Article  CAS  Google Scholar 

  28. Xu L, Cheng L, Wang C, et al. Conjugated polymers for photothermal therapy of cancer. Polym Chem, 2014, 5: 1573–1580

    Article  CAS  Google Scholar 

  29. He Y, Wang Y. Near-infrared photothermal conversion based on polymer materials. Acta Polym Sin, 2019, 50: 102–108

    Google Scholar 

  30. Zhang Y, Zhou S, Chong KC, et al. Near-infrared light-induced shape memory, self-healable and anti-bacterial elastomers prepared by incorporation of a diketopyrrolopyrrole-based conjugated polymer. Mater Chem Front, 2019, 3: 836–841

    Article  CAS  Google Scholar 

  31. Yang K, Xu H, Cheng L, et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater, 2012, 24: 5586–5592

    Article  CAS  Google Scholar 

  32. Yang J, Choi J, Bang D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed, 2011, 50: 441–444

    Article  CAS  Google Scholar 

  33. Zha Z, Yue X, Ren Q, et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater, 2013, 25: 777–782

    Article  CAS  Google Scholar 

  34. Shi Y, Liu S, Liu Y, et al. Facile fabrication of nanoscale porphyrinic covalent organic polymers for combined photodynamic and photothermal cancer therapy. ACS Appl Mater Interfaces, 2019, 11: 12321–12326

    Article  CAS  Google Scholar 

  35. Cao Y, Dou JH, Zhao N, et al. Highly efficient NIR-II photothermal conversion based on an organic conjugated polymer. Chem Mater, 2016, 29: 718–725

    Article  CAS  Google Scholar 

  36. Chen P, Ma Y, Zheng Z, et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat Commun, 2019, 10: 1192

    Article  CAS  Google Scholar 

  37. Msayib KJ, McKeown NB. Inexpensive polyphenylene network polymers with enhanced microporosity. J Mater Chem A, 2016, 4: 10110–10113

    Article  CAS  Google Scholar 

  38. Wang S, Zhang C, Shu Y, et al. Layered microporous polymers by solvent knitting method. Sci Adv, 2017, 3: e1602610

    Article  Google Scholar 

  39. Hou S, Tan B. Naphthyl substitution-induced fine tuning of porosity and gas uptake capacity in microporous hyper-cross-linked amine polymers. Macromolecules, 2018, 51: 2923–2931

    Article  CAS  Google Scholar 

  40. Hou S, Razzaque S, Tan B. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polym Chem, 2019, 10: 1299–1311

    Article  CAS  Google Scholar 

  41. Jeong HK, Jin MH, So KP, et al. Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D-Appl Phys, 2009, 42: 065418

    Article  CAS  Google Scholar 

  42. Teweldebrhan D, Balandin AA. Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett, 2009, 94: 013101

    Article  CAS  Google Scholar 

  43. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B, 2000, 61: 14095–14107

    Article  CAS  Google Scholar 

  44. Lü B, Chen Y, Li P, et al. Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting nearinfrared photothermal conversion. Nat Commun, 2019, 10: 767

    Article  CAS  Google Scholar 

  45. Wang J, Zhao J, Li Y, et al. Enhanced light absorption in porous particles for ultra-NIR-sensitive biomaterials. ACS Macro Lett, 2015, 4: 392–397

    Article  CAS  Google Scholar 

  46. Xie H, Shao J, Ma Y, et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials, 2018, 164: 11–21

    Article  CAS  Google Scholar 

  47. Li Z, Zhang X, Wang S, et al. Polydopamine coated shape memory polymer: Enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chem Sci, 2016, 7: 4741–4747

    Article  CAS  Google Scholar 

  48. Liu W, Guo LX, Lin BP, et al. Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers. Macromolecules, 2016, 49: 4023–4030

    Article  CAS  Google Scholar 

  49. Feng Z, Hu J, Zuo H, et al. Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl Mater Interfaces, 2019, 11: 1469–1479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51503231 and 21374136), Guangdong Innovative and Entrepreneurial Research Team Program (2013S086), and the Fundamental Research Funds for the Central Universities (17lgjc03 and 18lgpy04).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Huang H and Liang G designed the project. Wu J, Wu Y and He Z performed the experiments. Huang H and Wu J cowrote the paper. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Huahua Huang  (黄华华) or Guodong Liang  (梁国栋).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jialong Wu got his BSc and MSc degrees from the School of Chemistry and Chemical Engineering, Sun Yat-sen University. He is a PhD candidate at the School of Materials Science and Engineering, Sun Yat-sen University. His research interests focus on the application of porous polymers in environment and energy conversion.

Huahua Huang is an associate professor at the School of Materials Science and Engineering, Sun Yat-sen University. She got her PhD degree from the Institute of Chemistry, Chinese Academy of Sciences in 2010. Her research interest mainly focuses on the syntheses and applications of functional polymers and shape memory polymers.

Guodong Liang is a professor at the School of Materials Science and Engineering, Sun Yat-sen University, China. He received his PhD degree from Zhejiang University in 2007. His research interest mainly focuses on constructing functional materials and exploiting their applications.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wu, Y., He, Z. et al. Conjugated microporous polymers for near-infrared photothermal control of shape change. Sci. China Mater. 64, 430–439 (2021). https://doi.org/10.1007/s40843-020-1403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1403-x

Keywords

Navigation