Skip to main content
Log in

Preparation and photocatalytic activity of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds [RF-(VM-SiO2)n-RF/an-TiO2/Ar-H] were prepared by the sol–gel reactions of the corresponding oligomer in the presence of anatase titanium oxide nanoparticles (an-TiO2) and the aromatic compounds such as bisphenol A [BPA], 1,1′-bi(2-naphthol) [BINOL], and fullerene under alkaline conditions. Thermogravimetric analyses measurements show that RF-(VM-SiO2)n-RF/an-TiO2 nanocomposite-encapsulated BPA and BINOL, in which the theoretical contents in the composites are 25 ∼ 32 %, were found to give no weight loss corresponding to the contents of these aromatic compounds even after calcination at 800 °C. On the other hand, the corresponding nanocomposite-encapsulated fullerene exhibited weight loss behavior related to the presence of fullerene under similar conditions; however, UV–vis spectra showed the presence of the residual fullerene in the composites even after calcination. An-TiO2 in these fluorinated nanocomposites can keep its crystalline structure without phase transformation into rutile even after calcination at 1,000 °C, although the parent an-TiO2 nanoparticles underwent a complete phase transformation into rutile under similar conditions. Notably, RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites can give a good photocatalytic activity even after calcination at 1,000 °C for the decolorization of methylene blue under UV light irradiation. More interestingly, these fluorinated nanocomposites before and after calcination were found to exhibit a higher photocatalytic activity at the initial UV light irradiation from 1 to 3 min than that of the corresponding RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites under similar conditions.

Encapsulated BPA and BINOL in the nanocomposites exhibit no weight loss even after calcination at 800 °C, and RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites before and after calcination at 1,000 °C can give a higher photocatalytic activity than that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites. Notably, the photocatalytic activity of RF-(VM-SiO2)n-RF/an-TiO2/C60 nanocomposites after calcination increased by about 2.5-fold, compared with that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arellano M, Mickel-Haciski I, Feke DL, Manas-Zloczower I (1996) J Coat Technol 68:83

    Google Scholar 

  2. Hartley PA, Parfitt GD, Pollack LB (1985) Power Technol 42:35

    Article  CAS  Google Scholar 

  3. Millis A, Lee S-K (2000) J Photochem Photobiol A: Chem 130:163

    Article  Google Scholar 

  4. Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol A: Chem 160:185

    Article  CAS  Google Scholar 

  5. Zhu Y, Zhang L, Yao W, Cao L (2000) Appl Surf Sci 158:32

    Article  CAS  Google Scholar 

  6. Yu JC, Yu J, Zhao J (2002) Appl Catal, B 36:31

    Article  CAS  Google Scholar 

  7. Reddy JS, Kumar R (1991) J Catal 130:440

    Article  CAS  Google Scholar 

  8. Sawada H, Sawada E, Kakehi H, Kariya T, Mugisawa M, Chounan Y, Miura M, Isu N (2009) Polym Compos 30:1848

    Article  CAS  Google Scholar 

  9. Sawada E, Kakehi H, Chounan Y, Miura M, Sato Y, Isu N, Sawada H (2010) Compos Part B 41:498

    Article  Google Scholar 

  10. Linsebigler AL, Lu GQ, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  11. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  12. Karakitsou KE, Verykios XE (1993) J Phys Chem 97:1184

    Article  CAS  Google Scholar 

  13. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  14. Gratzel M (2001) Nature 414:338

    Article  CAS  Google Scholar 

  15. O’Regan B, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  16. Liu S, Chen A (2005) Langmuir 21:8409

    Article  CAS  Google Scholar 

  17. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855

    Article  CAS  Google Scholar 

  18. Peng X, Chen A (2006) Adv Funct Mater 16:1355

    Article  CAS  Google Scholar 

  19. Madras G, McCoy BJ, Navrotsky A (2007) J Am Ceram Soc 90:250

    Article  CAS  Google Scholar 

  20. Wu G, Wang J, Thoma DF, Chen A (2008) Langmuir 24:3503

    Article  CAS  Google Scholar 

  21. Guo S, Yoshioka H, Kakehi H, Kato Y, Miura M, Isu N, Ameduri B, Sawada H (2012) J Colloid Interface Sci 387:141

    Article  CAS  Google Scholar 

  22. Sawada H, Nakayama M (1991) J Chem Soc Chem Commun 10:677–678

    Article  Google Scholar 

  23. Sawada H, Matsuki Y, Goto Y, Kodama S, Sugiya M, Nishiyama Y (2010) Bull Chem Soc Jpn 83:75

    Article  CAS  Google Scholar 

  24. Sawada H, Kakehi H, Tashima T, Nishiyama Y, Miura M, Isu N (2009) J Appl Polym Sci 112:3482

    Article  CAS  Google Scholar 

  25. Sawada H, Tashima T, Kodama S (2008) Polym Adv Technol 19:73

    Article  Google Scholar 

  26. Sawada H, Narumi T, Kodama S, Kamijo M, Ebara R, Sugiya M, Iwasaki Y (2007) Colloid Polym Sci 285:977

    Article  CAS  Google Scholar 

  27. Sawada H, Tashima T, Kakehi H, Nishiyama Y, Kikuchi M, Miura M, Sato Y, Isu N (2010) Polym J 42:167

    Article  CAS  Google Scholar 

  28. Sawada H, Tashima T, Nishiyama Y, Kikuchi M, Kostov G, Goto Y, Ameduri B (2011) Macromolecules 44:1114

    Article  CAS  Google Scholar 

  29. Sawada H, Kikuchi M, Nishida M (2011) J Polym Sci Part A; Polym Chem 49:1070

    Article  CAS  Google Scholar 

  30. Hilonga A, Kim J-K, Sarawade PB, Kim HT (2010) J Mater Sci 45:1255

    Article  CAS  Google Scholar 

  31. Hilonga A, Kim J-K, Sarawade PB, Kim HT (2010) J Mater Chem 45:1264

    CAS  Google Scholar 

  32. Wang Q, Chen C, Zhao D, Ma W, Zhao J (2008) Langmuir 24:7338

    Article  CAS  Google Scholar 

  33. Liu S, Yu J, Cheng B, Jaroniec M (2012) Adv Colloid Interface Sci 173:35

    Article  CAS  Google Scholar 

  34. Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQ, Cheng H-M (2010) Chem Commun 46:755

    Article  CAS  Google Scholar 

  35. Ho W, Yu JC, Lee S (2006) Chem Commun 1115

  36. Zhang H, Liu P, Li PF, Liu H, Qang Y, Zhang S, Guo M, Cheng H, Zhao H (2011) Chem Eur J 17

  37. Zhang D, Li G, Yang X, Yu JC (2009) Chem Commun 45:4381

    Article  Google Scholar 

  38. Liu M, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W (2010) Chem Commun 46:1664

    Article  CAS  Google Scholar 

  39. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) J Am Chem Soc 131:3152

    Article  CAS  Google Scholar 

  40. Yang GH, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) J Am Chem Soc 131:4078

    Article  CAS  Google Scholar 

  41. Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005) Chem Phys Lett 401:579

    Article  CAS  Google Scholar 

  42. Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research 24550220 from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7157 kb)

ESM 2

(DOCX 7358 kb)

ESM 3

(DOCX 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Ogasawara, T., Saito, T. et al. Preparation and photocatalytic activity of fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds. Colloid Polym Sci 291, 2947–2957 (2013). https://doi.org/10.1007/s00396-013-3027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3027-5

Keywords

Navigation