Skip to main content
Log in

Pickering emulsion polymerized magnetite-poly(methyl methacrylate) composite particles and their magnetorheology

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Magnetic poly(methyl methacrylate) (PMMA)/Fe3O4 composite nanoparticles were fabricated by Pickering emulsion polymerization using nano-sized iron oxide (Fe3O4) particles as a solid stabilizer that had been synthesized initially from a hydrothermal process. High-resolution scanning electron microscopy was applied to characterize the morphology of the materials. Fourier transformation infrared spectroscopy confirmed the chemical structure of both pure Fe3O4 and PMMA/Fe3O4 composites. The magnetic properties and atomic and molecular structure of a crystal of the materials were examined by vibration sample magnetometry and X-ray diffraction, respectively. The magnetorheological (MR) features of both pure Fe3O4 and PMMA/Fe3O4 nanoparticles dispersed in mineral oil under a magnetic field were characterized by a rotational rheometer. The dynamic yield stress was higher than the elastic stress under external magnetic field. The PMMA/Fe3O4 composite-based MR fluid showed good dispersion stability, while exhibiting typical MR characteristics for the applied magnetic field dependent yield stress with a slope of 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu YD, Choi HJ, Choi SB (2012) Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids Surf A-Physicochem Eng Asp 403:133–138

    Article  CAS  Google Scholar 

  2. Chand M, Shankar A, Noorjahan, Jain K, Pant RP (2014) Improved properties of bidispersed magnetorheological fluids. RSC Adv 4:53960–53966

    CAS  Google Scholar 

  3. de Vicente J, Ruiz-Lopez JA, Andablo-Reyes E, Segovia-Gutierrez JP, Hidalgo-Alvarez R (2011) Squeeze flow magnetorheology. J Rheol 55:753–779

    Article  Google Scholar 

  4. Bica I, Anitas EM, Averis LME, Bunoiu M (2015) Magnetodielectric effects in composite materials based on paraffin, carbonyl iron and grapheme. J Ind Eng Chem 21:1323–1327

    Article  CAS  Google Scholar 

  5. Li WH, Lynam C, Chen J, Liu B, Zhang XZ, Wallace GG (2007) Magnetorheology of single-walled nanotube dispersions. Mater Lett 61:3116–3118

    Article  CAS  Google Scholar 

  6. Bunoiu M, Bica I (2016) Magnetorheological elastomer based on silicone rubber, carbonyl iron and Rochelle salt: effects of alternating electric and static magnetic fields intensities. J Ind Eng Chem 37:312–318

    Article  CAS  Google Scholar 

  7. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740

    Article  CAS  Google Scholar 

  8. Thirupathi G, Singh R (2014) Magneto-viscosity of MnZn-ferrite ferrofluid. Physica B 448:346–348

    Article  CAS  Google Scholar 

  9. Yu M, Yang C, Bian X, Zhao S, Wang T, Liu S, Guo T (2016) Application of Fe78Si9B13 amorphous particles in magnetorheological fluids. RSC 6:22511–22518

    CAS  Google Scholar 

  10. Kim YJ, Liu YD, Seo Y, Choi HJ (2013) Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their Magnetoresponsive characteristics. Langmuir 29:4959–4965

    Article  CAS  Google Scholar 

  11. Dong X, Tong Y, Ma N, Qi M, Ou J (2015) Properties of cobalt nanofiber-based magnetorheological fluids. RSC Adv 5:13958–13963

    Article  CAS  Google Scholar 

  12. Cabuk M, Yavuz M, Unal HI (2016) Electrokinetic, electrorheological and viscoelastic properties of of polythiophene-graft-chitosan copolymer particles. Colloids Surf A Physicochem Eng Asp 510:231–238

    Article  CAS  Google Scholar 

  13. Yang J, Sun S, Li W, Du H, Alici G, Nakano M (2015) Development of a linear damper working with magnetorheological shear thickening fluids. J Intell Mater Sys Struct 26:1811–1817

    Article  CAS  Google Scholar 

  14. Bica I, Liu YD, Choi HJ (2013) Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem 19:394–406

    Article  CAS  Google Scholar 

  15. Piao SH, Kwon SH, Zhang WL, Choi HJ (2015) Celebrating soft Matter’s 10th anniversary: stimuli-responsive Pickering emulsion polymerized smart fluids. Soft Matter 11:646–654

    Article  CAS  Google Scholar 

  16. Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631

    Article  CAS  Google Scholar 

  17. Liu H, Wei Z, Hu M, Deng Y, Tong Z, Wang C (2014) Fabrication of degradable polymer microspheres via pH-responsive chitosan-based Pickering emulsion photopolymerization. RSC Adv 4:29344–29351

    Article  CAS  Google Scholar 

  18. Wei XR, Liu J, Yang Y, Deng L (2014) A general approach towards efficient catalysis in Pickering emulsions stabilized by amphiphilic RGO-silica hybrid materials. RSC Adv 4:35744–35749

    Article  CAS  Google Scholar 

  19. Schrade A, Landfester K, Ziener U (2013) Pickering-type stabilized nanoparticles by heterophase polymerization. Chem Soc Rev 42:6823

    Article  CAS  Google Scholar 

  20. Cauvin S, Colver PJ, Bon SAF (2005) Pickering stabilized Miniemulsion polymerization: preparation of clay armored latexes. Macromolecules 38:7887

    Article  CAS  Google Scholar 

  21. Dao TD, Erdenedelger G, Jeong HM (2014) Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene coreeshell microsphere exhibiting ultra-low percolation threshold of electrical conductivity. Polymer 55:4709–4719

    Article  CAS  Google Scholar 

  22. Lee KY, Blaker JJ, Heng JYY, Murakami R, Bismarck A (2014) pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions. React Funct Polym 85:208–213

    Article  CAS  Google Scholar 

  23. Lin Z, Yu D, Li Y (2015) Study on the magnetic ODSA-in-Water Pickering emulsion stabilized by Fe3O4 nanoparticle. Colloid Polym Sci 293:125–134

    Article  CAS  Google Scholar 

  24. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  25. Wei ZJ, Yang Y, Yang R, Wang CY (2012) Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chem 14:3230–3236

    Article  CAS  Google Scholar 

  26. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with a Fe3O4@SiO2 Core and perpendicularly aligned mesoporous SiO2 Shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  CAS  Google Scholar 

  27. Shen LH, Bao JF, Wang D, Wang YX, Chen ZW, Ren L, Zhou X, Ke XB, Chen M, Yang AQ (2013) One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bioapplication. Nano 5:2133

    CAS  Google Scholar 

  28. Choi HJ, Jang IB, Lee JY, Pich A, Bhattacharya S, Adler HJ (2005) Magnetorheology of synthesized core–shell structured nanoparticle. IEEE T Magn 41:3448–3450

    Article  CAS  Google Scholar 

  29. Liu YD, Choi HJ (2015) Magnetorheology of core–shell typed dual-coated carbonyl iron particle fabricated by a sol–gel and self-assembly process. Mater Res Bull 69:92–97

    Article  CAS  Google Scholar 

  30. Quan XM, Liu YD, Choi HJ (2015) Magnetorheology of iron associated magnetic metal-organic framework nanoparticle. J Appl Phys 117:17C732

    Article  Google Scholar 

  31. Monfreda M, Varani F, Cattaruzza F, Ciambrone S, Proposito A (2015) Fast profiling of cocaine seizures by FTIR spectroscopy and GC-MS analysis of minor alkaloids and residual solvents. Sci Justice 55:456–466

    Article  Google Scholar 

  32. Mohammad AA, Ali RA (2016) Fe3O4@B-MCM-41:a new magnetically recoverable nanostructured catalyst for the synthesis of polyhydroquinolines. J Magn Magn Mater 398:205–214

    Article  Google Scholar 

  33. Khanlou HM, Ang BC, Talebian S, Barzani MM, Silakhori M, Fauzi H (2015) A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: synthesis and characterization. Measurement 70:179–187

    Article  Google Scholar 

  34. Chae HS, Piao SH, Choi HJ (2015) Fabrication of spherical Fe3O4 particles with a solvothermal method and their magnetorheological characteristics. J Ind Eng Chem 29:129–133

    Article  CAS  Google Scholar 

  35. Wang J, Yang J, Li X, Wang D, Wei B, Song H, Li X, Fu S (2016) Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Phys E 75:66–71

    Article  CAS  Google Scholar 

  36. Feng J, Mao J, Wen X, Tu M (2011) Ltrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Alloys Compd 509:9093–9097

    Article  CAS  Google Scholar 

  37. Safari J, Zarnegar Z, Hekmatara H (2016) Green synthesis of Fe3O4 nanoparticles and survey their magnetic properties, synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 46:1047–1052

    CAS  Google Scholar 

  38. Zhu J, He J, Du X, Lu R, Huang L, Ge X (2011) A facile and flexible process of b-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl Surf Sci 257:9056–9062

    Article  CAS  Google Scholar 

  39. Cheng Q, Pavlinek V, He Y, Li C, Saha P (2009) Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid Polym Sci 287:435–441

    Article  CAS  Google Scholar 

  40. Buron H, Mengual O, Meunier G, Cayré I, Snabre P (2004) Optical characterization of concentrated dispersions: applications to laboratory analyses and on-line process monitoring and control. Polym Int 53:1205–1209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Trade, Industry and Energy, Korea (#10047791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C.Y., Piao, S.H. & Choi, H.J. Pickering emulsion polymerized magnetite-poly(methyl methacrylate) composite particles and their magnetorheology. Colloid Polym Sci 295, 959–966 (2017). https://doi.org/10.1007/s00396-017-4086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4086-9

Keywords

Navigation