Skip to main content

Advertisement

Log in

Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.

Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lu H, Fei B, Xin JH, Wang R, Li L (2006) Fabrication of UV-blocking nanohybrid coating via miniemulsion polymerization. J Colloid Interface Sci 300:111–116

    Article  CAS  Google Scholar 

  2. Supaphol P, Harnsiri W, Junkasem J (2004) Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic polypropylene. J Appl Polym Sci 92:201–212

    Article  CAS  Google Scholar 

  3. Tiarks F, Landfester K, Antonietti M (2001) Encapsulation of carbon black by miniemulsion polymerization. Macromol Chem Phys 202:51–60

    Article  CAS  Google Scholar 

  4. Wen ZY, Wu MM, Itoh T, Kubo M, Lin ZX, Yamamoto O (2002) Effects of alumina whisker in (PEO)8–LiClO4-based composite polymer electrolytes. Solid State Ionics 148:185–191

    Article  CAS  Google Scholar 

  5. Liu H, Ye H, Zhang Y (2008) Preparation and characterization of PMMA/flaky aluminum composite particle in the presence of MPS. Colloids Surf A 315:1–6

    Article  CAS  Google Scholar 

  6. Duguet E, Abboud M, Morvan F, Maheu P, Fontanille M (2000) PMMA encapsulation of alumina particles through aqueous suspension polymerisation processes. Macromol Symp 151:365–370

    Article  CAS  Google Scholar 

  7. Zeng Z, Yu J, Guo ZX (2005) Preparation of functionalized core–shell alumina/polystyrene composite nanoparticles. Macromol Chem Phys 206:1558–1567

    Article  CAS  Google Scholar 

  8. Fleischhaker F, Zentel R (2005) Photonic crystals from core–shell colloids with incorporated highly fluorescent quantum dots. Chem Mater 17:1346–1351

    Article  CAS  Google Scholar 

  9. Cauvin S, Colver PJ, Bon SAF (2005) Pickering stabilized miniemulsion polymerization: preparation of clay armored latexes. Macromolecules 38:7887–7889

    Article  CAS  Google Scholar 

  10. Mirzataheri M, Mahdavian AR, Atai M (2009) Nanocomposite particles with core-shell morphology IV: an efficient approach to the encapsulation of Cloisite 30B by poly (styrene-co-butyl acrylate) and preparation of its nanocomposite latex via miniemulsion polymerization. Colloid Polym Sci 287:725–732

    Article  CAS  Google Scholar 

  11. Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite 2-vinylpyridine)−Silica coll, 2nd edn. Wiley-VCH, Weinheim, pp 77–154

    Google Scholar 

  12. Van Berkel KY, Hawker CJ (2010) Tailored composite polymer–metal nanoparticles by miniemulsion polymerization and thiol-ene functionalization. J Polym Sci Part A: Polym Chem 48:1594–1606

    Article  Google Scholar 

  13. Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81:243–264

    Article  CAS  Google Scholar 

  14. Zhou H, Wu SS, Shen J (2008) Polymer/Silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  Google Scholar 

  15. Chiang CL, Ma CCM, Wu DL, Kuan HC (2003) Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol–gel method. J Polym Sci Part A: Polym Chem 41:905–913

    Article  CAS  Google Scholar 

  16. Leuninger J, Tiarks F, Wiese H, Schuler B (2004) Aqueous nanocomposites. Dispersions of nanostructured silica-acrylate particles-a new binder generation. Farbe Lack 110:30–38

    CAS  Google Scholar 

  17. Xue Z, Wiese H (March 15, 2001) (BASF AG) International Patent WO0118081

  18. Xue Z, Wiese H (January 3, 2003) (BASF AG) International patent WO03000760

  19. Caruso F, Möhwald H (1999) Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15:8276–8281

    Article  CAS  Google Scholar 

  20. Wu Q, Wang ZQ, Kong XF, Gu XD, Xue G (2008) A facile strategy for controlling the self-assembly of nanocomposite particles based on colloidal steric stabilization theory. Langmuir 24:7778–7784

    Article  CAS  Google Scholar 

  21. Dupin D, Schmid A, Balmer JA, Armes SP (2007) Efficient synthesis of poly(2-vinylpyridine)−silica colloidal nanocomposite particles using a cationic Azo initiator. Langmuir 23:11812–11818

    Article  CAS  Google Scholar 

  22. Schmid A, Tonnar J, Armes SP (2008) A new highly efficient route to polymer-silica colloidal nanocomposite particles. Adv Mater 20:3331–3336

    Article  CAS  Google Scholar 

  23. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3463–3470

    Google Scholar 

  24. Tissot I, Reymond JP, Lefebvre F, Bourgeat-Lami E (2002) SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. Chem Mater 14:1325–1331

    Article  CAS  Google Scholar 

  25. Zou H, Wu SS, Shan J (2008) Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles. Langmuir 24:10453–10461

    Article  CAS  Google Scholar 

  26. Leng WG, Chen M, Zhou SX, Wu LM (2010) Capillary force induced formation of monodisperse polystyrene/silica organic–inorganic hybrid hollow spheres. Langmuir 26:14271–14275

    Article  CAS  Google Scholar 

  27. Watanabe M, Tamai T (2006) Acrylic polymer/silica organic–inorganic hybrid emulsions for coating materials: role of the silane coupling agent. J Polym Sci Part A: Polym Chem 44:4736–4742

    Article  CAS  Google Scholar 

  28. Tamai T, Watanabe M (2006) Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol–gel process. J Polym Sci Part A: Polym Chem 44:273–280

    Article  CAS  Google Scholar 

  29. Tong X, Tang T, Feng ZL, Huang BT (2002) Preparation of polymer/silica nanoscale hybrids through sol–gel method involving emulsion polymers. II. Poly(ethyl acrylate)/SiO2. J Appl Polym Sci 86:3532–3536

    Article  CAS  Google Scholar 

  30. Tong X, Tang T, Zhang QL, Feng ZL, Huang BT (2002) Polymer/silica nanoscale hybrids through sol–gel method involving emulsion polymers. I. Morphology of poly(butyl methacrylate)/SiO2. J Appl Polym Sci 83:446–454

    Article  CAS  Google Scholar 

  31. Kan CY, Liu DS, Kong XZ, Zhu XL (2001) Study on the preparation and properties of styrene–butyl acrylate–silicone copolymer latices. J Appl Polym Sci 82:3194–3200

    Article  CAS  Google Scholar 

  32. Watanabe M, Tamai T (2007) Sol–gel reaction in acrylic polymer emulsions: the effect of particle surface charge. Langmuir 23:3062–3066

    Article  CAS  Google Scholar 

  33. Schmid A, Scherl P, Armes SP, Leite CAP, Galembeck F (2009) Synthesis and characterization of film-forming colloidal nanocomposite particles prepared via surfactant-free aqueous emulsion copolymerization. Macromolecules 42:3721–3728

    Article  CAS  Google Scholar 

  34. Zhang JA, Liu NN, Wang MZ, Ge XW, Wu MY, Yang JJ, Wu QY, Jin ZL (2010) Preparation and characterization of polymer/silica nanocomposites via double in situminiemulsion polymerization. J Polym Sci Part A: Polym Chem 48:3128–3134

    Article  CAS  Google Scholar 

  35. You B, Wen NG, Shi L, Wu LM, Zi J (2009) Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties. J Mater Chem 19:3594–3597

    Article  CAS  Google Scholar 

  36. Qian Z, Zhang ZC, Song LY, Liu HR (2009) A novel approach to raspberry-like particles for superhydrophobic materials. J Mater Chem 19:1297–1304

    Article  CAS  Google Scholar 

  37. Chen Y, Wang R, Zhou J, Fang HJ, Shi B (2011) Membrane formation temperature-dependent gas transport through thermo-sensitive polyurethane containing in situ-generated TiO2 nanoparticles. Polymer 52:1856–1867

    Article  CAS  Google Scholar 

  38. Huang KW, Tsai LW, Kuo SW (2009) Influence of octakis-functionalized polyhedral oligomeric silsesquioxanes on the physical properties of their polymer nanocomposites. Polymer 50:4876–4887

    Article  CAS  Google Scholar 

  39. Ding YY, Xu L, Hu GS (2011) Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH. Chin Sci Bull 56:3878–3883

    Article  CAS  Google Scholar 

  40. Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078

    Article  CAS  Google Scholar 

  41. Shanmuganathan K, Deodhar S, Dembsey N, Fan Q, Calvert PD, Warner SB, Patra PK (2007) Flame retardancy and char microstructure of nylon-6/layered silicate nanocomposites. J Appl Polym Sci 104:1540–1550

    Article  CAS  Google Scholar 

  42. Liu ZH, Wang JJ, Na HN, Yuan XY (2011) Effect of inorganic fillers on morphology and mechanical properties of PA66/POE-g-MAH/filler composites. J Macromol Sci Part B: Phys 50:484–492

    Article  Google Scholar 

  43. Chen DL, Yang HM (2010) Polypropylene/combinational inorganic filler micro-/nanocomposites: synergistic effects of micro-/nanoscale combinational inorganic fillers on their mechanical properties. J Appl Polym Sci 115:624–634

    Article  CAS  Google Scholar 

  44. Xiong HM, Zhao X, Chen JS (2001) New polymer−inorganic nanocomposites: PEO−ZnO and PEO−ZnO−LiClO4 films. J Phys Chem B 105:10169–10174

    Article  CAS  Google Scholar 

  45. Miao H, Lin SL, Lin JP (2012) Poly(vinyl chloride-co-vinyl acetate-co-maleic anhydride)/silica nanocomposites derived from in situ suspension polymerization. J Appl Polym Sci 123:3764–3771

    Article  CAS  Google Scholar 

  46. Rostami M, Mohseni M, Ranjbar Z (2012) An attempt to quantitatively predict the interfacial adhesion of differently surface treated nanosilicas in a polyurethane coating matrix using tensile strength and DMTA analysis. Int J Adhes Adhes 34:24–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (project numbers 21074122, 50873096, and 51003122) and the Ministry of Science and Technology of China (project number 2007CB936401) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huarong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Shao, H. & Liu, H. Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process. Colloid Polym Sci 291, 1181–1190 (2013). https://doi.org/10.1007/s00396-012-2847-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2847-z

Keywords

Navigation