Skip to main content
Log in

Formation and surface properties of raspberry-like silica particles: effect of molecular weight of the coating poly(methacrylic acid) brushes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, silica particles were firstly modified with poly(methyl methacrylate) and then converted to poly(methacrylic acid) (PMAA). The PMAA brushes with different molecular weight were used to modify the seed particles and learn the formation process of the raspberry-like particles. Silica particles with core–shell structure were obtained when the silica seed particles were modified only with carboxyl functional groups. With the increase of the molecular weight of PMAA brushes, uniform raspberry-like silica particles appeared gradually. But when the molecular weight of PMAA brushes was above 136,100, the morphologies became complicated. The electric charge of the polymer brushes was also found to have influence on the final morphologies of the particles. The contact angle (CA) tests showed that films composed of nanoparticles with uniform raspberry-like structures had an average CA of 157.2°, which indicated great prospects in the super-hydrophobic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. doi:10.1021/Cr100449n

    Article  Google Scholar 

  2. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliver Rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Article  Google Scholar 

  3. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Edit 44(32):5083–5087. doi:10.1002/anie.200501500

    Article  Google Scholar 

  4. Dechezelles JF, Malik V, Crassous JJ, Schurtenberger P (2013) Hybrid raspberry microgels with tunable thermoresponsive behavior. Soft Matter 9(10):2798–2802. doi:10.1039/C3sm27433k

    Article  Google Scholar 

  5. Song LY, Lin CL, Wang L, Sheng HL, Zhou YF, Nie WY (2011) Fabrication of teardrop-shaped silica particles in polyelectrolyte diluted solution through in situ sol-gel process. J Sol-Gel Sci Techn 58(3):651–655. doi:10.1007/s10971-011-2440-9

    Article  Google Scholar 

  6. Zhai L, Cebeci FC, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4(7):1349–1353. doi:10.1021/Nl049463j

    Article  Google Scholar 

  7. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20(3):848–858. doi:10.1021/Cm7024813

    Article  Google Scholar 

  8. Parvole J, Chaduc I, Ako K, Spalla O, Thill A, Ravaine S, Duguet E, Lansalot M, Bourgeat-Lami E (2012) Efficient synthesis of snowman- and dumbbell-like silica/polymer anisotropic heterodimers through emulsion polymerization using a surface-anchored cationic initiator. Macromolecules 45(17):7009–7018. doi:10.1021/Ma301355g

    Article  Google Scholar 

  9. Agrawal M, Gupta S, Stamm M (2011) Recent developments in fabrication and applications of colloid based composite particles. J Mater Chem 21(3):615–627. doi:10.1039/C0jm02631j

    Article  Google Scholar 

  10. Li YX, Pan YF, Zhu LL, Wang ZQ, Su DM, Xue G (2011) Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle. Macromol Rapid Comm 32(21):1741–1747. doi:10.1002/marc.201100377

    Article  Google Scholar 

  11. Ming W, Wu D, van Benthem R, de With G (2005) Superhydrophobic films from raspberry-like particles. Nano Lett 5(11):2298–2301. doi:10.1021/Nl0517363

    Article  Google Scholar 

  12. Tsai HJ, Lee YL (2007) Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir ACS J Surf Colloid 23(25):12687–12692. doi:10.1021/La702521u

    Article  Google Scholar 

  13. Qian Z, Zhang ZC, Song LY, Liu HR (2009) A novel approach to raspberry-like particles for superhydrophobic materials. J Mater Chem 19(9):1297–1304. doi:10.1039/B810808k

    Article  Google Scholar 

  14. D’Acunzi M, Mammen L, Singh M, Deng X, Roth M, Auernhammer GK, Butt HJ, Vollmer D (2010) Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss 146:35–48. doi:10.1039/B925676h

    Article  Google Scholar 

  15. Liu XM, He JH (2007) Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J Colloid Interface Sci 314(1):341–345. doi:10.1016/j.jcis.2007.05.011

    Article  Google Scholar 

  16. Du X, Liu XM, Chen HM, He JH (2009) Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings. J Phys Chem C 113(21):9063–9070. doi:10.1021/Jp9016344

    Article  Google Scholar 

  17. Yao TJ, Wang CX, Lin Q, Li X, Chen XL, Wu J, Zhang JH, Yu K, Yang B (2009) Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology 20 (6). doi:10.1088/0957-4484/20/6/065304

  18. Tsai PS, Yang YM, Lee YL (2007) Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization. Nanotechnology 18 (46). doi:10.1088/0957-4484/18/46/465604

  19. Li GL, Yang XL, Wang JY (2008) Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloid Surf A 322(1–3):192–198. doi:10.1016/j.colsurfa.2008.03.006

    Article  Google Scholar 

  20. Zhang YH, Chen H, Zou QC (2009) Anionic surfactant for silica-coated polystyrene composite microspheres prepared with miniemulsion polymerization. Colloid Polym Sci 287(10):1221–1227. doi:10.1007/s00396-009-2089-x

    Article  Google Scholar 

  21. Puretskiy N, Ionov L (2011) Synthesis of Robust raspberry-like particles using polymer brushes. Langmuir ACS J Surf Colloid 27(6):3006–3011. doi:10.1021/La104614t

    Article  Google Scholar 

  22. Wang JY, Yang XF (2008) Synthesis of core-corona polymer hybrids with a raspberry-like structure by the heterocoagulated pyridinium reaction. Langmuir ACS J Surf Colloid 24(7):3358–3364. doi:10.1021/La7036394

    Article  Google Scholar 

  23. Cai Y, Xie H, Sun J, Liu H, Wang J, Zhou Y, Nie W, Song L (2013) Weak acid–base interaction induced assembly for the formation of berry-like polystyrene/SiO2 composite particles. Mater Chem Phys 137(3):796–801. doi:10.1016/j.matchemphys.2012.09.069

  24. Zhang K, Ma J, Zhang B, Zhao S, Li YP, Xu YX, Yu WZ, Wang JY (2007) Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization. Mater Lett 61(4–5):949–952. doi:10.1016/j.matlet.2006.06.021

    Article  Google Scholar 

  25. Zhang K, Li HT, Zhang HW, Zhao S, Wang D, Wang JY (2006) Surface-initiated atom transfer radical polymerization on spherical silicon gel in water-borne system at ambient temperature. Mater Chem Phys 96(2–3):477–482. doi:10.1016/j.matchemphys.2005.07.070

    Article  Google Scholar 

  26. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  27. Agrawal M, Pich A, Gupta S, Zafeiropoulos NE, Simon P, Stamm M (2008) Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness. Langmuir ACS J Surf Colloid 24(3):1013–1018. doi:10.1021/La702509j

    Article  Google Scholar 

  28. Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Accounts Chem Res 38(8):644–652. doi:10.1021/Ar040224c

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the National Natural Science Foundation of China (Grant No. 51303001), Anhui Provincial Natural Science Foundation (1408085ME86), Scientific Research Fund of Anhui Provincial Education Department (KJ2013A014), Startup Foundation for Doctors of Anhui University, Postdoctoral Science Foundation of China (01001419) and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifeng Zhou or Pengpeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhou, Y., Nie, W. et al. Formation and surface properties of raspberry-like silica particles: effect of molecular weight of the coating poly(methacrylic acid) brushes. J Sol-Gel Sci Technol 72, 122–129 (2014). https://doi.org/10.1007/s10971-014-3434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3434-1

Keywords

Navigation